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We now study a series of systems with our new tools based on the partition function. Some of
these are fun model systems, some important physical models with broad applicability and cool effects.
The next big thing after our initial work counting quantumly will be particle statistics and fermionic
systems, discussed at the beginning of Chapter 7.

Reading:

Chapter 7 sections 7.2 - 7.3

Problems: (Due on Thursday November 14 at the beginning of class)

(1) 6.20 The harmonic oscillator partition function! Ask me if your algebra long division is feeling
rusty.

(2) 6.21 Modifying the simple harmonic oscillator energy. Use Mathematica (and our Mathematica
intro... it will be very useful)

(3) 6.24 The partition function of oxygen

(4) 6.26 Heat capacity and low temp for the rotator system - see our class discussion

(5) 6.28 Filling in the exact result for CV for the rotator system. This is a continuation of problem
6.26. You may find it illuminating to read 6.27 as well. Use Mathematica.

(6) 6.39 More on Earth’s (and the moon’s) atmosphere. For part (b) add a computation for CO2

and comment on the lifetime of CO2 in the atmosphere as compared to nitrogen and hydrogen
gas.

(7) 7.3 Deriving the Saha relation. See pages 218-9 on why this is interesting.

(8) Black hole partition functions II Continuing with our partition function for the quantum
geometry of a black hole for observers near the horizon...
(a) Starting from the 1 geometric particle partition function in problem 6(c) of Guide 8, find

the heat capacity for one particle. Explain why the total heat capacity is just N times
this result for the whole black hole geometry. Using Mathematica plot the heat capacity
(or Cv/Nk) as a function of dimensionless temperature kT/ϵ. Please add the asymptotic
value to your plot, if it has one.

(b) By starting with the expectation value for area show that

AH = ⟨A⟩ = 8πG

gc2
⟨E⟩ .

(c) As you know these, observers are bathed in thermal Hawking radiation. When the ob-
servers’ acceleration g is large - which it is when the observers are just outside the horizon
- the temperature of the radiation is

Tg =
ℏg

2πck
.

Find the entropy at the temperature Tg. Compare to the average horizon area.
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(d) Is Bekenstein’s result for black hole entropy

SBH = k
AHc3

4Gℏ
= k

AH

4ℓ2P
in your result? It should be! Pause for a moment on the significance of this result:
You have derived the macroscopic form for the entropy of a black hole from gravitational
statistical mechanics (from a tentative theory of quantum gravity)! This is like deriving
the ideal gas law from statistical mechanics for a particle in an ∞-square well.

(e) But let’s work out the value of the extra term for these observers. Express the extra
term(s) as functions of the area, keeping in mind that this is valid for large black holes for
which N is very large. At the observers’ temperature Tg,

1

βϵ = π(ℓ/ℓP )
2 ≃ 0.86.

What is value of lnZ1 and the extra term(s) for these observers?

1and a certain value for ℓ/ℓP


