
Stat Mech (PHYS 370) Guide 9 Solutions Fall 2024 v1.0

(1) Harmonic oscillators
(a) He’s a start on the long division

where the second lines are subtracted from the first lines, as one would do in ordinary
long division.

(b) Using ϵ = hν = ℏω, the single oscillator partition function is the sum over states

Z1 =
∑
s

e−βE(s) = 1 + e−βϵ + e−2βϵ + . . .

but this is just the sum in part (a) so

Z1 =
1

1− e−βϵ
.

Note you may have (reasonably enough!) started with the energy levels

En = ℏω
(
n+

1

2

)
in which case you would have obtained

Z1 = [2 sinh(βϵ/2)]
−1

after doing similar algebraic steps.
(c) Differentiating to obtain interesting quantities

⟨E⟩1 = −∂ lnZ1

∂β
=

ϵe−βϵ

1− e−βϵ
=

ϵ

eβϵ − 1
.

(d) The total energy of N identical, independent oscillators is just the sum of these energies
for each one,

U = N ⟨E⟩ = Nϵ

eβϵ − 1
which was what was in the solution to 3.25. You should look back at this to see how much
easier this method is.
If you had started with the hyperbolic sine form of the partition function then the average
energy is

U = N ⟨E⟩ = N coth(βϵ/2)

(e) The rest of this is as before in the solution of problem 7 in Guide 6.
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(2) This is similar to the intro to mathematica - now with a realistic case of an oscillator with one
anharmonic term. Here’s the mathematica file I used:



(* Solution to 6.21 - anharmonic oscillator model for H2. k=1 *)

In[!]:= Z = Sum[Exp[-β * ϵ * (1.03 * n - .03 * n^2)], {n, 0, 11}]

Out[!]= 1. + ⅇ-7.7 β ϵ + ⅇ-7.3 β ϵ + ⅇ-6.84 β ϵ + ⅇ-6.32 β ϵ +

ⅇ-5.74 β ϵ + ⅇ-5.1 β ϵ + ⅇ-4.4 β ϵ + ⅇ-3.64 β ϵ + ⅇ-2.82 β ϵ + ⅇ-1.94 β ϵ + ⅇ-1. β ϵ

(* Single molecule partition function - and so N=1 *)

In[!]:= U = -(1 / Z) * D[Z, β] /. β → 1 / T

Out[!]= --7.7 ⅇ-
7.7 ϵ

T ϵ - 7.3 ⅇ-
7.3 ϵ

T ϵ - 6.84 ⅇ-
6.84 ϵ

T ϵ - 6.32 ⅇ-
6.32 ϵ

T ϵ - 5.74 ⅇ-
5.74 ϵ

T ϵ - 5.1 ⅇ-
5.1 ϵ

T ϵ -

4.4 ⅇ-
4.4 ϵ

T ϵ - 3.64 ⅇ-
3.64 ϵ

T ϵ - 2.82 ⅇ-
2.82 ϵ

T ϵ - 1.94 ⅇ-
1.94 ϵ

T ϵ - 1. ⅇ-
1. ϵ

T ϵ 

1. + ⅇ-
7.7 ϵ

T + ⅇ-
7.3 ϵ

T + ⅇ-
6.84 ϵ

T + ⅇ-
6.32 ϵ

T + ⅇ-
5.74 ϵ

T + ⅇ-
5.1 ϵ

T + ⅇ-
4.4 ϵ

T + ⅇ-
3.64 ϵ

T + ⅇ-
2.82 ϵ

T + ⅇ-
1.94 ϵ

T + ⅇ-
1. ϵ

T 

In[!]:= Cv = D[U, T] /. T → t * ϵ

Out[!]= - -
59.29 ⅇ-7.7/t

t2
-
53.29 ⅇ-7.3/t

t2
-
46.7856 ⅇ-6.84/t

t2
-
39.9424 ⅇ-6.32/t

t2
-

32.9476 ⅇ-5.74/t

t2
-
26.01 ⅇ-5.1/t

t2
-
19.36 ⅇ-4.4/t

t2
-
13.2496 ⅇ-3.64/t

t2
-

7.9524 ⅇ-2.82/t

t2
-
3.7636 ⅇ-1.94/t

t2
-
1. ⅇ-1./t

t2
 1. + ⅇ-7.7/t + ⅇ-7.3/t + ⅇ-6.84/t +

ⅇ-6.32/t + ⅇ-5.74/t + ⅇ-5.1/t + ⅇ-4.4/t + ⅇ-3.64/t + ⅇ-2.82/t + ⅇ-1.94/t + ⅇ-1./t +

7.7 ⅇ-7.7/t

t2 ϵ
+
7.3 ⅇ-7.3/t

t2 ϵ
+
6.84 ⅇ-6.84/t

t2 ϵ
+
6.32 ⅇ-6.32/t

t2 ϵ
+
5.74 ⅇ-5.74/t

t2 ϵ
+
5.1 ⅇ-5.1/t

t2 ϵ
+

4.4 ⅇ-4.4/t

t2 ϵ
+
3.64 ⅇ-3.64/t

t2 ϵ
+
2.82 ⅇ-2.82/t

t2 ϵ
+
1.94 ⅇ-1.94/t

t2 ϵ
+
1. ⅇ-1./t

t2 ϵ

-7.7 ⅇ-7.7/t ϵ - 7.3 ⅇ-7.3/t ϵ - 6.84 ⅇ-6.84/t ϵ - 6.32 ⅇ-6.32/t ϵ - 5.74 ⅇ-5.74/t ϵ - 5.1

ⅇ-5.1/t ϵ - 4.4 ⅇ-4.4/t ϵ - 3.64 ⅇ-3.64/t ϵ - 2.82 ⅇ-2.82/t ϵ - 1.94 ⅇ-1.94/t ϵ - 1. ⅇ-1./t ϵ 

1. + ⅇ-7.7/t + ⅇ-7.3/t + ⅇ-6.84/t + ⅇ-6.32/t + ⅇ-5.74/t + ⅇ-5.1/t + ⅇ-4.4/t +

ⅇ-3.64/t + ⅇ-2.82/t + ⅇ-1.94/t + ⅇ-1./t
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In[!]:= p3 = Plot[Cv, {t, 0, 3}]

Out[!]=
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0.6

0.8

1.0

(* I recomputed this plot for n_max = 15, 13, and 11 in decending

order and shown in the following plot with the usual harmonic case *)

In[!]:= Show[p1, p2, p3, p4]

Out[!]=

0.5 1.0 1.5 2.0 2.5 3.0
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0.8

1.0

1.2

2     sol_6.21.nb



In[!]:= Show%220, AxesLabel → HoldForm
kT

ϵ
, HoldForm

Cv

Nk
,

PlotLabel → HoldForm[Cv vs T], LabelStyle → {GrayLevel[0]}

Out[!]=
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Nk

Cv vs T
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The set of curves are in order from top down, nmax = 15, nmax = 13, nmax = 11.
You can see in the final plots that the partition functions with fewer terms differ dramatically

at high temperature - but that is where the approximation fails. The key take away is that
the anharmonic model’s heat capacity rises above the harmonic case - just as shown in the
“vibrational” portion of figure 1.13. We are told that the hydrogen dissociates before the heat
capacity would level off so that anharmonic case shows the extra increase before dissociation,
as we see in figure 1.13.

(3) With two identical atoms in the oxygen molecule we can use equation 6.33

Zrot ≃
kT

2ϵ
= 72

This is a good approximation at room temperature kT ∼ 1/40 ≫ ϵ = 1.8× 10−4 eV.

(4) The rotational partition function has the first two terms of

Z = 1 + 3e−2βϵ + . . .

In the low temperature, kT ≪ ϵ, limit these are the largest terms. We’ll keep only the leading
order term. The average energy is

⟨E⟩ =
∑
j

E(j)(2j + 1)e−βE(j) ≃ (2ϵ)(3)e−2ϵβ

1 + 3e−2βϵ
≃ 6ϵe−2ϵβ

where the last approximation recognizes that the denominator contributes only higher order
terms. The heat capacity is then

C =
∂ ⟨E⟩
∂T

=
∂β

∂T

∂ ⟨E⟩
∂β

≃
(
− 1

kT 2

)(
−12ϵ2 e−2ϵβ

)
= 3k

(
2ϵ

kT

)2

e−2ϵ/kT .

Other than the degeneracy, this is the same result as for a two state system - which makes
sense given that we have truncated the system to two states. The plot of the heat capacity
(Cv/Nk) vs. dimensionless temperature (kT/ϵ) is
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It is a curve rising from CV = 0 at T = 0 to a level line at high temp. The behavior of CV

around zero is consistent with the third law, CV − > 0 as T− > 0. Including higher order
terms would correct the result and interpolate between these two limiting cases.

(5) The rotation partition function is

Z =
∑
j

(2j + 1)e−βϵj(j+1)

Here’s the mathematica file,



(* Solution to 6.28 - quantum rotor model - here j is an integer! *)

In[16]:= Z = Sum[(2 * j + 1) * Exp[-β * ϵ * j (j + 1)], {j, 0, 6}]

Out[16]= 1 + 13 ⅇ-42 β ϵ + 11 ⅇ-30 β ϵ + 9 ⅇ-20 β ϵ + 7 ⅇ-12 β ϵ + 5 ⅇ-6 β ϵ + 3 ⅇ-2 β ϵ

In[17]:= U = -(1 / Z) * D[Z, β]

Out[17]= -
-546 ⅇ-42 β ϵ ϵ - 330 ⅇ-30 β ϵ ϵ - 180 ⅇ-20 β ϵ ϵ - 84 ⅇ-12 β ϵ ϵ - 30 ⅇ-6 β ϵ ϵ - 6 ⅇ-2 β ϵ ϵ

1 + 13 ⅇ-42 β ϵ + 11 ⅇ-30 β ϵ + 9 ⅇ-20 β ϵ + 7 ⅇ-12 β ϵ + 5 ⅇ-6 β ϵ + 3 ⅇ-2 β ϵ

In[18]:= U /. β → 1 / T

Out[18]= -
-546 ⅇ-

42 ϵ

T ϵ - 330 ⅇ-
30 ϵ

T ϵ - 180 ⅇ-
20 ϵ

T ϵ - 84 ⅇ-
12 ϵ

T ϵ - 30 ⅇ-
6 ϵ

T ϵ - 6 ⅇ-
2 ϵ

T ϵ

1 + 13 ⅇ-
42 ϵ

T + 11 ⅇ-
30 ϵ

T + 9 ⅇ-
20 ϵ

T + 7 ⅇ-
12 ϵ

T + 5 ⅇ-
6 ϵ

T + 3 ⅇ-
2 ϵ

T

In[19]:= Cv = D[(U /. β → 1 / T), T] /. T → t * ϵ

Out[19]= -
- 22 932 ⅇ-42/t

t2
- 9900 ⅇ-30/t

t2
- 3600 ⅇ-20/t

t2
- 1008 ⅇ-12/t

t2
- 180 ⅇ-6/t

t2
- 12 ⅇ-2/t

t2

1 + 13 ⅇ-42/t + 11 ⅇ-30/t + 9 ⅇ-20/t + 7 ⅇ-12/t + 5 ⅇ-6/t + 3 ⅇ-2/t
+

546 ⅇ-42/t

t2 ϵ
+
330 ⅇ-30/t

t2 ϵ
+
180 ⅇ-20/t

t2 ϵ
+
84 ⅇ-12/t

t2 ϵ
+
30 ⅇ-6/t

t2 ϵ
+
6 ⅇ-2/t

t2 ϵ

-546 ⅇ-42/t ϵ - 330 ⅇ-30/t ϵ - 180 ⅇ-20/t ϵ - 84 ⅇ-12/t ϵ - 30 ⅇ-6/t ϵ - 6 ⅇ-2/t ϵ 

1 + 13 ⅇ-42/t + 11 ⅇ-30/t + 9 ⅇ-20/t + 7 ⅇ-12/t + 5 ⅇ-6/t + 3 ⅇ-2/t
2

In[26]:= p4 = PlotCv, {t, 0, 3}, PlotRange → {0, 1.2},

AxesLabel → HoldForm
kT

ϵ
, HoldForm

Cv

Nk
, PlotLabel → HoldForm[Cv vs T]

Out[26]=

0.5 1.0 1.5 2.0 2.5 3.0

kT

ϵ

0.2

0.4

0.6

0.8

1.0

1.2

Cv

Nk

Cv vs T

(* compares values of the 7 terms in Z at kT/epsilon =

3 to see iif more terms would improve the calculation *)



In[24]:= N[Table[(2 * j + 1) Exp[- j (j + 1) / 3], {j, 0, 7}]]

Out[24]= 1., 1.54025, 0.676676, 0.128209, 0.0114537, 0.000499399, 0.0000108099, 1.1729 × 10-7

(* Nope! The last term is already

small so more terms will not improve the plot *)

2     sol_6.28.nb
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The takeaway in terms of the physics is the overshoot in CV before leveling off at the
“equipartition value” at high temperatures. Had we not done this problem and instead started
with 6.26 I would not have anticipated this increase in CV .

(6) On Earth’s atmosphere: We are interested in the probability of molecules reaching escape
velocity, about 11 km/s.
(a) The probability is given in equation (6.54) and in a much more useful form in (6.55). The

lower limit of the integral is given by

xmin =
vesc
vmax

,

where vesc is the escape speed for the planet and vmax is the maximum of the Maxwell
velocity distribution. From class,

vesc =

√
2GM⊙

r
≃ 1.1× 104 m/s

for Earth. The maximum is

vmax =

√
2kT

m
=

√
2RT

M
.

For N2 this is about 770 m/s. Computing the ration gives xmin ≃ 14.27. Now using Math-
ematica and the command NIntegrate[xˆ2*Exp[-xˆ2], {x, 14.27, Infinity}] I find (multiplying
by 4/

√
π)

PN2 =
4√
π
NIntegrate[xˆ2*Exp[-xˆ2], {x, 14.27, Infinity}] ≃ 5.9× 10−88.

Not big ... but we don’t have much to compare to at this stage...
(b) For hydrogen we do the same analysis but now M = 2 g so vmax ≃ 2880 m/s and

xmin ≃ 3.82 giving PH2
≃ 2.1 × 10−6. Well, that is a lot larger. Not much H2 in our

atmosphere I would guess! For He, the computation is similar beginning with M = 4 g.
This yields PHe ≃ 1.4× 10−12. Ok, smaller but still much larger than the probability for
nitrogen. Much of the original hydrogen and helium escaped Earth’s atmosphere by now.

For CO2 the molar mass is M = 44 g from our BOE climate change calculation. Thus,
vmax ≃ 615 m/s and

xmin =
vesc
vmax

≃ 11 km/s

615 m/s
≃ 17.9

giving PCO2
≃ 8.2 × 10−139. Well, that is hugely smaller. So not much CO2 is going to

leak out of our atmosphere. The excess we produce will be around for a while.
(c) Now moving to the (newly formed) moon. Suppose it had a similar atmosphere with

nitrogen at the same temperature. Now the escape velocity form the moon is about

vesc =

√
2GM

R
≃ 2.4 km/s.

So, xmin = vesc/vmax ≃ 2400/770 and P ≃ 2.2 × 10−4 which, in the context of atmo-
spheres, is very high. Nitrogen should have long since fled the moon.
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(7) On the ionization of hydrogen, H → p+ e−. To derive the Saha relation we need to compare
the probability of the H gas being in the ionized (or without the electron) state versus the
un-ionized (or with electron) state (i.e. H atoms). We can use the Gibbs weight e−β(ϵ−µN), for
the states. The probability of the ion state (“p” in the book’s notation) when N = 0 relative
to the atom state (“H”) when N = 1 is

Pp

PH
=

e−β(ϵp−µ·0)

e−β(ϵH−µ·1) = e−β(ϵp−ϵH+µ)

where ϵp is the energy of no electron state and ϵH is the energy of the occupied state. Now
ϵp − ϵH = ϵ, the ionization energy of 13.6 eV. Thus,

Pu

Po
= eβ(−ϵ−µ).

Following the suggestion in the problem,

µ = −kT ln

(
V

Nℓ3Q

)
= −kT ln

(
2kT

Pℓ3Q

)
where in the second step I used the ideal gas law, neglecting the two degenerate states of the
free electron. So

e−βµ =
kT

Pℓ3Q
and therefore

Pp

PH
= eβ(−ϵ+µ) =

kT

P

(
2πmekT

h2

)3/2

e−βϵ,

which is equivalent to the Saha relation in equation (5.130). The relation gives the relative
abundance of ions to atoms. For example as Schroeder states in Ch 5, on the surface of the
Sun this ratio is 8× 10−5 so less than one hydrogen atom in 10000 is ionized.

(8) (2 pts.) Black holes continued
(a) The one particle partition function can be expressed as

Z1 =
2− e−βϵ

(eβϵ − 1)
2 .

The partition function for the whole system is ZN = (ZN
1 )/N ! (as long as the geometric

particle are not too “dense”). The average energy is given by the log derivative of the
partition function so since lnZ = N lnZ1+ Junk,

U = − ∂

∂β
lnZ = Nϵ

(
1− 3eβϵ + 4e4βϵ

1− 3eβϵ + 2e2βϵ

)
.

Finally, the heat capacity is then

Cv =
∂U

∂T
= ah, well, a bit of a messy function -

see the Mathematica code for this. The code includes plots of dimensionless heat capacity
Cv/Nk as a function of dimensionless temperature kT/ϵ. The heat capacity asymptotes
to 2 indicating that the degrees of freedom for these particles is 2.



(* 1 particle partition function for bh's *)

In[152]:=

Z1 = (2 - Exp[-β * ϵ]) / (Exp[β * ϵ] - 1)^2
Out[152]=

2 - ⅇ-β ϵ

-1 + ⅇβ ϵ2

In[153]:=

U = -(1 / Z1) * D[Z1, β]
Out[153]=

-

-1 + ⅇβ ϵ2 -
2 ⅇβ ϵ 2-ⅇ-β ϵ ϵ

-1+ⅇβ ϵ3
+ ⅇ-β ϵ ϵ

-1+ⅇβ ϵ2


2 - ⅇ-β ϵ

In[154]:=

Simplify[U]
Out[154]=

1 - 3 ⅇβ ϵ + 4 ⅇ2 β ϵ ϵ

1 - 3 ⅇβ ϵ + 2 ⅇ2 β ϵ

In[167]:=

Cv = Simplify[D[(U /. β → 1 / T), T] /. T → t * ϵ]
Out[167]=

2 ⅇ2/t -2 + 3 ⅇ
1
t

1 - 2 ⅇ
1
t

2
-1 + ⅇ

1
t

2
t2

In[200]:=

Plot{Cv, 2}, {t, 0, 8}, PlotRange → {0, 2}, AxesLabel → HoldForm
kT

ϵ
, HoldForm

Cv

Nk


Out[200]=

0 2 4 6 8

kT

ϵ

0.5

1.0

1.5

2.0

Cv

Nk

(* Cv has a steep increase starting at
dimensionless temperature of about 0.1 and asymptotes to 2 *)



In[204]:=

PlotCv, {t, 0, 1.2}, AxesLabel → HoldForm
kT

ϵ
, HoldForm

Cv

Nk


0.2 0.4 0.6 0.8 1.0 1.2

kT

ϵ

0.5

1.0

1.5

Cv

Nk

(* I have added a vertical line at about the dimensionless temperature,
kT/ϵ of the observers near the horizon *)

In[171]:=

PlotCv, {t, 0, .1}, AxesLabel → HoldForm
kT

ϵ
, HoldForm

Cv

Nk


Out[171]=

0.02 0.04 0.06 0.08 0.10

kT

ϵ

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Cv

Nk

(* Cv is extremely flat at low temperatures! *)

In[201]:=

N[Pi * .273]
Out[201]=

0.857655

In[203]:=

N[1 / (Pi * .273)]
Out[203]=

1.16597

2     sol_bh_pf.nb
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(b) As we saw in class, in the near the horizon limit

Eg =
gc2A

8πG
Since the energy and area are proportional, the expectation values must be as well,

U = ⟨E⟩ = g ⟨A⟩
8π

or AH =
8πG

gc2
⟨E⟩ .

Here, ⟨A⟩ is the expectation value for the area of the surface where the observers are,
roughly the area of the horizon AH is this near horizon limit. You’ll notice this is the
same sort of proportionality as in the paramagnetic problem - see 4(c).
One can also show this by computation: In this non-interacting gas of N particles, the
expectation of the area is N times ⟨A⟩ = N ⟨A⟩1. In the large-ish j-limit the single particle
expectation value is

⟨A⟩1 =
1

Z1

∑
m

4πℓ2m2eβϵm,

where m = 2j + 1. But this expression is proportional to the expectation value of the
energy,

⟨A⟩ = 4πℓ2

ϵ

(
−∂ lnZ1

∂β

)
=

4πℓ2

ϵ
⟨E⟩ = 8πG

gc2
⟨E⟩ ,

as expected. I used ϵ = gc2ℓ2/(2G) where ℓ2 = ℏG/c3 (or, ℓ2 = ℏγG/c3 if you include the
Barbero-Immirzi parameter γ).

(c) Using

S = −∂F

∂T
and F = −kT lnZ

we have

S =
∂β

∂T

∂

∂β
lnZ + k lnZ =

1

T
⟨E⟩+ k lnZ

or
S

k
= β ⟨E⟩+ lnZ.

Using the result from above and the inverse temperature for these observers,

β =
2πc

ℏg
,

we have
S

k
=

(
2πc

ℏg

)(
gc2

8πg

)
⟨A⟩+ lnZ =

A

4ℓ2P
+ lnZ.

(d) Yes!! :-) The last expression has the Bekenstein-Hawking result in the first term (keeping
in mind ⟨A⟩ = AH)! The acceleration of the observers drops out so this relation holds for
all g (in this near horizon limit). Maybe the log term is a correction to the BH entropy....?

(e) Let’s study the log correction term with more care. You could have looked at either the
distinguishable or indistinguishable case. I’ll discuss both. In the distinguishable case

Zd = (Z1)
N

and

lnZd = N lnZ1 =
⟨A⟩
⟨A⟩1

lnZ1

which could be very large. However at the quoted value for βϵ the log of the single particle
partition function vanishes so we get the Bekenstein-Hawking entropy. This effectively sets



15

the Barbero-Immirzi parameter γ, a constant in the theory, and is a way to see the current
state of affairs in the LQG literature. Here, γ ≃ 0.258.
In the indistinguishable case, it is more complicated. Using Stirling’s approximation

lnZi = ln

(
ZN
1

N !

)
≃ ln

(
ZN
1

NNe−N

)
= N (lnZ1 − lnN + 1) = N ln

(
Z1e

N

)
.

But as we saw above, N = ⟨A⟩ / ⟨A⟩1. Hence,

lnZi ≃
⟨A⟩
⟨A⟩1

(
lnZ1 − ln

⟨A⟩
⟨A⟩1

+ 1

)
.

At the quoted value for βϵ, lnZ1 vanishes. For a large black hole 1 will be smaller than
the log so that

S

k
≃ A

4ℓ2P
− A

⟨A⟩1
ln

A

⟨A⟩1
in the near horizon, large black hole, large-ish j limit. So there does appear to be a
correction term. (A closer look shows that ⟨A⟩1 ≃ 11 ℓ2P and so for large black holes the
“correction term” may dominate. To be explored later...)


