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Chapter 9

Sturm-Liouville
Theory—Orthogonal
Functions

In the preceding chapter, we developed two linearly independent solutions
of the second-order linear homogeneous differential equation and proved
that no third linearly independent solution existed. In this chapter, the em-
phasis shifts from solving the differential equation to developing and under
standing general properties of the set of solutions. There is a close analogy
between the concepts in this chapter and those of linear algebra in Chap-
ter 3. Functions here play the role of veclors there, and linear operators
play that of matrices in Chapter 3. The diagonalization of a real symrmetdc
matrix in Chapter 3 corresponds here to the solution of an ordinary differ
ential equation (ODE), defined by a self-adjoint operator £, in terros of
its eigenfunctions, which are the “continuous” analog of the eigenvectors
in Chaptler 3, and real eigenvalues that correspond to physically obscrvable
quantitics in the laboratory. Just as a columnn eigenvector vector a is writ-
ten as [a) in the Dirac notation of Chapter 3, we now write an eigenfunc-
tion as lg). In the Cartesian component a; = %; - a, the discrete index § of
the coordinate unit veclors is now replaced by the contimuous varable x in
).

In Section 9.1, the concepls of self-adjoint operator, eigenfunclion, cigen-
value, and Hermilian operator are presented. The concepl of adjoint operator,
given first in terms of differential equations, is then redefined in aceordance
with usage in quantum mechanics. The vital properties of reality of eigenvalues
and orthogonality of eigenfunctions are derived in Section 9.2, In Section 9.3,
we discuss the Gram-Schmidt procedure for systematically constructing sets
ol orthogonal functions, Finally, the general property of the completeness of
a set of elgenfunctions is explored in Section 9.4,
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9.1 SelfAdjointODEs

In Chapter 8, we studied, classified, and solved linear, second-order ODEs cor-
responding to linear, second-order differential operators of the general form

=¥

d= il
L= ’ﬁ'ﬂ[ﬂ@ + p1(x) T + pelx), (9.1}

defined over the region @ = & = b. A number of restrictions apply. The co-
ellicients p(x), p(x), and pa(x) are real functions of x, and the first 2 — 4
derivatives of g () are conlinuous, Reference to Egs. (8.42) and (8.44) shows
that Px) = pn () pola) and Q(x) = () o). Hence, pylx) must not van-
izsh for @ = & = b, The zeros of py(a) are singular points (Section 8.4), and
the preceding slatement means that our interval [a, &#] must be such that there
are: no singular points in the interior of the interval. There may be and olten
are singular points on the boundaries, Moreover, b — oo and/or @ — —oo are
passible in certain problems.

For a linear operator £, the analog of a quadratic [orm for a matrx in
Chapter 3 is the integral in Dirac’s notation of Section 3.2:

b
(Ll = (u|lw) = f Wiz Lulx) da
3
= | uwlpu’ + mu + pau)dx, (8.2)

taking « = «* to be real. This integral is the continuous analog of the inner
product of vectors in Chapter 1 and here of w and Cuw. Two vectors wisx), vix)
are orthogonal il their inner product vanishes,

i
(wlu) = j vl dae = 0.

I we shift the derivatives to the first factor 2in Eq. (9.2) by integrating by parts
once or twice, we are led to the equivalent expression

ul Cuty = (@) — P,

b g2 :
3] [M{mm — o ?Jz“} wd ©3)

z d
= [u(x)(m — powa)]_, + ( [%[Fﬂﬂ} = a{mu] + qu} ‘ u)

For Eqgs. (9.2) and (9.3) to agree [or all w, the integrands have to be equal. The
cormparison yields

u(py — pilu+ 2u(py — pu =0
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or

Pl = pu(x). . (9.4)

The ferms at the boundary & = o and e = b in Eq. (9.3) then also vanish,
Because of the analogy with the transpose matrix in Chapter 3, it is conve-
nient o define the linear operalor in Eqg. (9.3)

.a!:,::‘ﬁ'l:i ) da g IR
du . i "
=z +(Epy — i‘j‘lJI + (o — Py + P2l (9.5)

as the adjoint' operator £ so that (u|Cu) = (LZulu) Tor all w. The necessary
and sufficient condition that £ = £, or {(«[fu} = {Lulu), is that Eg. (9.4) be
satisfied for all w. When this condilion is satisfied,

[ ez

Lfu=Lu= 4 )= E] + g, (9.6)

i
where p(x) = i) and g(x) = pa(r), and the operator £ s said to be self-
adjoint. The importance of the form of Eq. (8.6) is that we will be able to carry
out two integrations by parts in Eq. (9.3).2

The ODEs introduced in Section 8.3, Legendre’s equation, and the linear
oscillator equation are self-adjoint, bul others, such as the Laguerre and
Iermite equations, are not. However, the theory of linear, second-order, sclf-
adjoint differential equations is perfectly general because we can always trans-
form the non-self-adjoint operator into the required self-adjoint form. Consider
Eq. (8.1) with pf 2 p. Il we multiply £ by? '

I “n) ]
o) GXP[ @]’

The adjoint operator hears a somewhat foveed relationship to the transpose matrix, A hetler
Justifieation for the nomenclalure @5 found in a comparizon of the self-adjoint opsrator (plus
approprizie bonndary conditions) with the symmetrie matrix. These significant properties are
developed in Section 9.2, Becanse of these properlies, we are interested In sellf-adjoint operators.
When adjoint or self-adjoint operalors are discossed in the context of a Hilbert space, all funetdons
af thal space will saldsly the boundary conditions.

*The importance of the self-adjoint form (plus boundury conditions) will becoine apparent in
Section 9.2, Bg. (9.22) and after,

SIF we moltioly £ by 06 el and then dermand that

Fe=I2
T

=0 Lhat the new operator will be sali-adjoing, vwe abtain

6 = exp Uzi—gdz] !
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wiz obtain

Lo 0] e = & [ [ 2] 20
P A U Iﬂuff)dt} = [‘*“} U m'm“] m}

| Pa(z) T,
T R U pumdt} % 80

which is clearly sell-adjoinl [see Eq. (8.67]. Notice the pg{a) in the denominator.
This is why we require pp(x) +# 0,a < 2 < b In the [ollowing development,
we assume that O has been put into self-adjoint form.

B Ligenfunetions and Eigenvalues

Schridinger’s time-independent wave ecquation for a single-particle system,
Hy ) = Ele(x),

is amajor example of an eigenvalue equation in physics: here, the differential
operator £ is defined by the Hamiltonian H and the eigenvalue is the tofal
energy F of the system. The eigenlunction () is usually called a wave fone-
tion. A variational derivation of this Schrodinger equation appears in Seclion
18.5. Bazed on spherical, cylindrical, or some other symmetry properties, a
three- or fourdimensional partial differental equation (PDE) or eigenvalues
equation, such as the Schrodinger equation, ollen separates into three (or
more) eigenvalue equalions ina single variable. In this context, an eigenvalue
equation sometimes takes the more general seli~adjoint form,

Lz + dAwlp(e) =0, or Oy + lwjuy =0, (9.8)

where the constant 2 is the eigenvalue, £ is self-adjoint, and w{x) is a known
weight or density function; w(x) = 0 except possibly at isolated points at
which w(ax) = (. The Schridinger cquation for the simple harmonie oscillator
is a particular case of Eq. (9.8) with w = 1. The analysis of Eq. (9.8) with £ as
defined in Eq. (9.6} and ils solutions is called Sturm-Liouville theory. Fora
given choice of the parameter A, a funetion w; (x), which satisfies Fq. (4.5) and
the imposed boundary conditions discussed later, is called an eigenfune-
tion corresponding to A, The constant 2 is then called an eigenvalue, There is
no guarantee that an eigenfunction w; () will exist for an arbitrary choice of
the parameter A, Indeed, the requirement that there be an eigenfunciion olien
restricts the acceptable values of A to a discrele sel.
The inner product (or overlap integral) of two functions

{ulw) = f v Lyl ey dir

depends on the weight funetion and generalizes our previous delinition for
w = 1tow £ 1 The laller also modifies the definition of orthogonality
of two eigenfunctions: They are orthogonal if their overlap Integral vanishes,
fie|uy ) = (L Examples of eigenvalues for the Legendre and Hermite cqua-
Liong appear in the exercises of Section 8.5, Here, we have the mathematical
approach to the process of quaniization in quantum mechanics.
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Table 9.1 . Egquation plx) qlxd A wix)
Legendre 11—zt i efiEa b i
Shifted Legendre L —a) i} Il 410 1
Associated Legendre 1—af —m il — ) i+ 1

2

Bessel® = = n; ad x
Lagnerrs o= a i e
Associaled Lagoerte s 1 o —k xhgx
Hermite e 0 Zue e
Simple harmonic cuseil Lo 1 a e 1

I . EXAMPLE

L1 [

"‘Drf_hng-ﬁaall[..],r of Bessel funciions is special. Compars Section 12,1 for details.
U Thiz will form the hasis for Chapter 14, Fourier series,

The exira weight function w{r) sometimes appears as an asymplotic wave
function . that is a8 common factor in all solutions of a PDE, such as the
Sehrédinger equation, for example, when the potential Vie) — Oasx — oo
in H = T 4 V. We find yr,. when we set V = 0 in the Schrddinger equation.
Another source for wixr) may be a nonzero angular momenium barrier of the
form I + 1)/x* in a PDE or separated ODE that has a regular singularity and
dorminates at x — 0. In such a case the indicial equation, such as Egs. (5.65) or
(%.84), shows that the wave function has &' as an overall factor. Since the wave
function enters twice in matrix elements (v Ay and orthogonality relations
(|}, the welght fmetions in Table 8.1 come from these common factors in
both radial wave functions. This is the physical reason why the exp{—a) for
Laguerre polynomials and =" exp({—) for associated Laguerre polynomials
in Tahle 9.1 arise and is explained in more detail in the nesxt example. The
mathematical reason is that the weight function is needed 1o make the ODE
sell=adjoint.

Asymptotic Behavior, Weight Function Let us look at the asymptotic
forms for small and large + of the radial Schrédinger equation for a particle of
mass i moving in a spherically symmetric polential Vi),

Ymdr | 2m

2 & 2 e
( b -F‘—”“thm}—g)m@q:o,

where R;(r} = wy(r)/r is the radial wave function, E is the energy eigenvalue,
and [ is the orbilal angular momentum (see Exercises 2.5.12 and 2.5.14). From
the asymptotic ODEs we derive the asymptolic forms of the radial wave func-
tion. The boundary conditions are that w(0) = 0 and 17} — 0 for large r.
Let us explain these boundary conditions forl = ). We aslk that wy — 0 as
¥ — 0 because if ug(0) diverged the wave function could not be normalized,
that is, {uglug) = 1 cannot be enforeed. If wy(0) is a finite nonzero constant,
then Ro(r) -~ 1/r for v — 0. In thal case, the kinetic cnergy, -~ Vz}, ~ A{r},
would generaie a singularity at the origin in the Sclrédinger equation.
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First, we explore how the angular momentum barrier [,V!(ia__r}-_!.?] affects the
solulion for v close 1o zero, when | =2 0. We assume that the potential is no
more singular than a Coulomb potential, that is, ¥ V{r) — Dasr — 0, so that
the potential and the energy cigenvalue arve negligible compared 1o the angular
momentum barrier for small v. Then the regular solution of the (asymptotic,
meaning approximate for small ) radial ODE

it ol L 1 (A
Com g o) =0

is 2y () ~ +**! for small 7, the regular solution of this radial ODE, whereas the
irregular solution u; () ~ v~ is not finite at small 7 and is not an acceptable
solution, Thus, forr — (0, the radial wave function £, (+) ~ ' due to the harmier,

Now we turn our attention to large v — oo, assuming V(r) — 0, so that
we have to solve the asymplotic ODE

_B dPur)

P did = EBuir)

because the angular momentum barrier is also negligible at large v, For bound
slates E = 0, the solulion is w(r) ~ e for large v with E = —#%%/2m,
whereas the other independent solution & — oo for large +

This settles the asymptotic behavior of the wave functions, which must
have these limiting forms, v’ at small r and =" at large . In Chapter 13, the
complete solution will be given in terms of associaled Laguerre polynomials
L{r) 5o that By(r) ~ r'e " L(r), Therefore, orthonormality integrals (i |y}
will contain the weight fimction +#+2e=" along with a product of Laguerre
polynomials, as shown in Table 9.1, except for scaling 2er — x and renaming
2l 4 2 — &, and the corresponding ODEs are self-adjoint. W

Legendre’s Equation Legendre's equation is given by
(1—2%)y" — 2oy’ +nln+ Dy =10, (9.9)

over the interval —1 = & = 1 and with boundary condition that g(+1) is finile.
From Egs. (9.1), (9.8), and (8.9),

mEl=1-a"=p, wx)=],

mixl= -Ex=p, i=nln+l),

palx) =0 =gq.

Recall that our series solulions of Legendre’s equation (BExercise £.5.5)
diverged, unless n was restricted to an integer, This also represenis a quanii-
zation of the eigenvalue i, H

Yompare also Exercise 5.2.11
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When the equations of Chapter 8 are transformed into the self-adjoint form, we
find the values of the coeflicients and parameters (Table 9.1). The coellicient
o) is the cosfficient of the sccond derivative of the eigen-function, The eigen-
value 2 is the parameter that is available in a term of the form Lw(c)g(x); any
a4 dependence apart from the cigenfunction becomes the weighting function
wlx). If there is another term containing the eigenfunction (nol the deriva-
tives), the coefficient of the eigenlunclion in this additional term is identificd
as g (). If no such term is present, gi(x) is simply zero.

Deuteron  Furlher insight into the concepis ol eigenlunction and eigenvalue
may be provided by an extremely simple model of the deuteron. The neutron—
proton nuclear inferaction is represented by a square well potential: ¥V = W
= 0ford=r =a V =0lory = o The Schridinger wave equalion is

Aoty _
—ﬁv Vil = Enfr, (9,100
where i = () is the probability aroplitnde for finding a neutron-proton pair
at relative distance v, The boundary condilions are (0] finite and (+) — 0
for large v
We may write w{r) = rifr(r), and using Exercises 2.5.12 and 2.5, 14 the radial
wave equalion becomes

%—:kffu:ﬂ, (9.11)
with
. 2M :
K= n_zw — Vo) =0 (9.12)

for the interior range, b = 1 < a. Here, M is the reduced mass of the neutron-
proton system. Note that Vy = B = 0 for a bound state, leading to the sign of
k¥ in Eq. (9.11). For @ = r = oo, we have

dz
d%" k=0, (9.13)
with
2ME
ks = — > 0 (9.14)
[

hecause B < 0 for a bound stale with V' — 0 as» — oo, From the boundary
comdition that i rermain finite, @0} = 0, and

Winlr) =sinkr, 0=r<aqa. (9.15)

In the ringe oulside the potential well, we have a linear combination of the
two exponentials,

Upel¥) = Aexplipr + Bexp(—kar), a =71 < o0 (9.16)
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At r = a the solution to the ODE must be conlinuous, with a continuous
derivative, demanding that u,(a) = #..(a) and that «, (a) = u,,(a). These
Jjoining or matching conditions give

sinfe = Aexphon + Bexpl—kal, ©.17)
Eyenskia = kaAexp fea — B B expl—kaa). ;
The boundary condition for large + means that 4 = (. Dividing the preceding
pair of equations (to cancel ), we obtain

ky [E—V,
tankig = —— = —f
Ty fﬁz 1I|' B

: (9.18)

alranscendental equation for the energy B with only certain discrete solutions.
If ¥ is such that Eq. (9.18) can be safisfied, our solutions w4, (r) and we, (r) can
salisly the boundary condilions. IFf Eq, (9.18) is not satisfied, no acceptable
solution exists. The values of F, for which Eq. (1.18) is satislied, are the
eigenvalues; the corresponding function (1) = wq/v for v = o and ¢ (v) =
Uy /7 fOr v = a is the cigenfunction. For the actual deuteron problem, there
iz one (and only one) negative value of £ satisfving Eq. (9.18); that is, the
deuleron has one and only one bound state,

MNow, what happens if F does not satisly Eq. (9.18) (ie, £ £ ) is not
an eigenvalue)? In graphical form, imagine that F and therefore &; are varied
slightly. For F = By = FEp, k& is reduced, and sin g o has not turned down
enough to match exp(—&za). The joining conditions, Eq. (9.17), require A = 0
andd the wave lunction goes 0 oo, exponentially, For £ = Es = E, & is
larger, sinlna pealks sooner and has descended more vapidly al v = o The
Joining conditions demand 4 = 0, and the wave function goes to —oo expo-
nentially. Only for £ = Ey, an cigenvalue, will the wave function have the
required negative exponential asymptotic behavior (Fig. 9.1, W

Figure 9.1

Denteron Wave
Funetions;
Eigenlunction for
E=F

E=Hg}.f.‘f|'_.
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- Boundary Conditions

In the foregoing definition of eigenfunction, it was noted that the eigenfunction
w;, () was required to satisfy certain imposed boundary conditions. The term
boundary conditionsincludes as aspecial case the concept of initial conditions,
for instance, specifying the initial position i and the initial velocity v in some
dynamical problem. The only difference in the present usage of boundary
conditions in these one-dimensional problems is thal we ave going to apply
the conditions on both ends of the allowed range of the variable (o ensure a
self-adjoinl ODE,

Usually, the form of the differential equation or the boundary conditions
on the eigenfunctions will guarantee that, at the ends of our interval {(i.c., at
the boundary), the following products will wanish:
=1 and p(x}v‘[x}dyfdg] =1L (8.18)

a=h

du(x)

dr |y

plaje”(x)

Here, w(x) and v(x) are solutions of the particular ODE [Eq. (9.8)] being con-
sidered. A reason for the particular form of Eg. (9.1%) is suggested later. If we
recall the radial wave function @ of the hydrogen atom in Example 8.1.1 with
w(0) = 0 and du/dr ~ ¢ — Oas# — oo, then both boundary conditions are
satisfied. Similarly, in the deuteron Example 9.1.3, sinkr — Gasr — 0 and
die ™) /dr — 0 asr — oo, both boundary conditions are obeyed.

We can, however, work with a less restrictive set of boundary conditions,

U*j‘}u'l le—z = U—?Hf b=, (2.200

in which u(xr) and v(x) are solutions of the differential equation comresponding
to the same or to different eigenvalues. Equation (9.20) might well be sat-
isfied if we were dealing with a periodic physical system, such as a cryslal
lattice.

Equations ($.19) and (9.207) are written in terms of v°, complex conjugate.
When the solutions are real, v = v* and the asterisk may be ignored. However,
in Fourier exponential expansions and in quantum mechanies the funetions
will be complex and the complex conjugate will be needed.

- Hermitian Operators

We now prove an important property of the combination self-adjoint, second-
order differential operator [Eq. (9.6)], with funetions «() and v(x) that satisfy
boundary conditions given by Eq. (9.20) and explain the special form of the
latter.

By integrating v* (complex conjugate) times the second-order sell-adjoint
differential operator £ (operating on «) over the range @ = & = b, we obtain

B b B
f v L d = f v {pu)dr + f wiiga e (9.21) -
i Ers O
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using Eq. (2.8), or in Dirac nofation,
d _d
! .{: , = — P | .
{v]lu) = (v (Mpdm f g) u)
Integrating by parts, we have

h

fa f
f vi{pw ) de = v*pu’| — f v o dor, [9.22)
ok i

23

The integrated part vanishes on application of the boundary conditions [Ea.
(8.200], Integrating the remaining integral by parts 2 second time, we have

i | b
= [ v pulde = —v®pu| f w(pv™*)da. (8.23)
v la o ;

Again, the integrated part vanishes in an application of Eq. (9.207, A combina-
tion of Egs. (9.21)-(9.23) gives us

ol b
{u|fu) = j v Ly = f ulvde = {(Lvjuw). (8,24
ks @€
This property, given by Eq. (9.24), is expressed by stating that the operator
£ is [Termitian with respect to the functions w(x) and v(x), which satisfy
the boundary conditions specified by Eq. (9207, Note that if this Hermitian
property follows from self-adjoininess in o Hilbert space, then it includes that,
boundary conditions are imposed on all funetions of that space. The integral
in Eq. (2.24) may also be recognized as inner produet, (v|Cub, of |v) and | £}
These properties [Egs. (9.19) or (2.201] are so important for the concept
ol Hermilian operator (discussed next) and the consequences (Section 8.2)
that the interval (o, b) must be so as (o ensure that either Eq. (9.19) or Eq.
(£.20) is satisfied. The boundary conditions of the problem delerming the
range of inlegration. If our selutions are polynomials, the cocfficient p) may
restrict the range of integration. Note that p(x) also determines the singular
points of the differential equation (Section 8.4). For nonpolynomial solutions,
for example, sinna, cosna; (p = 1), the range of integration is determined hy
the boundary conditfions of each problem, as explained in the next cxample.

Integration Interval, [e, #] For £ = d®/da” a possible eigenvalue equation
i

% yx) + ny(x) = 0, (9.25)
with cigenfunctions

Uy = COS T, = Sinm e,
Eguation (9.20) becomes

—nsinmaesinnz |,= 0, or meosmrcosny o =0,
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interchanging i, and vy, Since sinmae and cos ne are periodic with period 2
(for nand mintegral), Eq. (9.20) is clearly satisfied ifa = xp and b = xp+ 2. If
a problem prescribes a different interval, the eigenfunctions and eigenvalues
will change along with the boundary conditions. The functions must always
be so that the boundary conditions [Eq. (9.20), ete.] are satisfied. For Lhis case
(Fourier series), the usual cases are o, =0, leading to (0, 2r), and my= —
leading to (=, 7). Here and throughout the following several chapters,
the relevant furctions will satisfy the boundary conditions prescribed by the
integration interval [Eq. (9.20)]. The interval [a, b] and the weighting factor
wizx) for the most commonly encountered second-order ODEs are listed in

Tabhle 8.2, B
T&blﬁ 9‘-2 Hqu&ti{.n [ [ I.I'J{r]
Legendre -1 1 1
Shifted Legendre 1] 1 1
Associaled Legendre -1 I 1
Laguerre 0 = e T
Associated Lageerre 0 oa aheH
Hermite —0 0 o
Simple harmeonic oscillator ] 2m 1
- F 4 L

IThe arthogonality interval [o, b] is determined by the houndary
conditions of Sectdon 8.1, pdx), q(F) are given in Table 9.1,
The welghting fiunction is established by putting the ODE in
self-adjoint form.

- Hermitian Operators in Quantum Mechanics

The preceding discussion focused on the classical second-order differential
operators of mathematical physics. Generalizing our Hermitian operator
theory, as required in quantum mechanics, we have an extension: The opera-
tors need be neither second-order dilferential operators nor real. For example,
the linear momentum operator p, = —if(d/0x) represents a real physical ob-
servable and will be an Hermitian operator. We simply assume (as is customary
in quantum mechanics) that the wave functions satisfy appropriate boundary
conditions in one or three (or other number of) dimensions, vanishing suffi-
ciently strongly at infinity or having periodic behavior (as in a erystal lattice or °
urnit intensity lor waves), In practice, this means that the wave functions are
in a given Hilbert space. The operator £ is ealled Hermitian if

(| Lalry} = f Y] Lyt = f{ﬁyfﬁ)’yﬁzdr = (L[ fa) (9.26)

for all ), ¥ of a given Hilbert space. Apart from the simple extension to
coimplex quantities, this definition is identical to Eq. (9.24).

e o = :

A R b,

Foa=T
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The adjoint A’ of an operator A is defined by
(W] Alyr) = f ¥ Alpdr = [ (AW ) Yo = (A [y}, (9.27)

Comparing with our classical, second derivative operator-oriented Eq. (9.5)
defining £, wesee that £1 = £* 3o that we have generalized the adjoint operator
to the complex domain (of quantum mechanics), Here, the adjoint is defined
in terms of the resultant integral, with the A' as part of the integrand. Clearly,
it A= Al (self-adjoint) and the (space of) functions, on which it acts, satisly
the previously mentioned boundary conditions, then 4 is Hermilian,

The expectation value of an operator £ is defined as

(L) = f WAL dT = (F|Ew). (9.283)

In the framework of quantum mechanics {£) corresponds to the theoretical
value of the physical observable represented by £, if the physical syslemisina
state described by the wave function . When this property is measured exXper
imentally, (£} may be obtained as the mean or average of many measurements
of the observable £ of the physical system in the stale .

If we require £ to be Hermitian, it is easy to show that {£) is real (as would
be expected from a measurement in a physieal theory), Taldng the complex
conjugate of Bq. (9.28a), we obtain

L) = U WLy r:ET] it f VLY dz

Rearranging the factors in the integrand, we have
(LY = f (L) WdT = (Ly ).
Then, applying our definition of Hermitian operator [Eq. (9.26)], we el
L= f Wt Lfrdr = (L}, (9.28b)

or (£} is real. It is worth noting that 1 is not necessarily an eigenfunction of
Ji

EXERCISES

9.1.1 Show thal Laguerre’s equation may be put into self-adjoint form by
multiplying by e and that w(z) = ¢ is the weighting function.

9.1.2 Show that the Hcrrmte equalion may be put into self-adjoint form by
multiplying by e~ and that this gives w(r) = ¢ as the appropriate
density lunction,

9.1.3 Show the following when the linear second-order differential equation
is expressed in self-adjoint lorm:
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(1) The Wronskian is equal fo a constant divided by the initial coelli-
clent .
C
Wi, 2] = —.
plx)
b A second solution is given by
0@ =cn@ [~
‘ p[_n{u]?

9.1.4 Forthe very special case & = Oand g () = 0, the self-adjoint cigenvalue
equation becomes

ol )
= |ro%2] =0
satisficd by
e ]
dx  pl@)

Use this to obtain a "second” solulion of the following:
{a} Legendre's equation;

(b} Laguerre's equation; and

{c} Hermite's cquation.

ANS o) ) = Emi ki

(b) wz(x) — ualiy) = f 'ﬁuﬂ’-? J

(€) wua(x) = ﬁ) e

These second solutions illustrate the divergenl behavior usually found
in a second solulion.
Note, In all three cases (e = L

8.1.5 Given that Cu = 0 and gLl is self-adjoint, show that for the adjoint
operator £, Z(gu) =0,

9.1.6 Forasecond-order differential operator £ that is self-adjoint show that

: i) . i
{yelCan) — (| L) = f [waLan — nLyplde = plwye — i) 5.
(23

9.1.7 Show that if a function  is required to sartisfy Laplace’s equation in a
finile region of space and to satisfy Dirichlet boundary conditions over *
the entire closed bounding surface, then  is unique.
flimg. One of the forms of Green's theorem (Section 1,100 will be helpiul.

9.1.8 Consider the solutions ol the Legendre, Hermite, and Laguerre equa-
tions to be polynomials. Show that the ranges of integration that guar-
antes that the Hermilian operator boundary conditions will be satisfied
are
(1) Legendre [—1, 1], (b)) Hermile (—oo, oo), () Laguerre [0, oo
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9.1.9 Wilhin the framework of quantum mechanics [Fq. (9.26) and following],
show that the following are Hermitian operators:

3
(a) momentum p = —ikV = —?'.2— oand
T
I
(b angular momentam L = —ihr = ¥V = - -'Ez—r ® V.
T

Hind. In Cartesian form L is g linear combination of noncommuting
Hermitian operators.

8.1.10 (a) Aisanon-Hermitian operator. Inthe sense of Egs, (8.28) and (9.27),
show thal

A+4Al and  i(A— AT)

are Hermilian operators,
(b} Using the preceding resull, show that every non-Hermitian operator
may be wrillen as alinear combination of two Hermitian operators,

9.1.11 UV and V are two arbitrary operators, not necessarily Hermitian, In the
sense of Eg. (9.27), show that
(ovyt = vigt.
Note the resemblance to Hermitian adjoint matrices.
Hing. Apply the definition of adjoint operator [Eq. (8,271

9.1.12 Prowve thal the product of two Ilermitian operaiors is Hermitian [Eq,
(9.267] if and only if the two operators commute,

$.1.13 Aand B are nunmn_lmuting quantum mechanical operators:
AB — BA =40,
Bhow that ' is Hermilian. Assume that appropriate boundary condi-
Hions are satisfied,
9.1.14 The operator £ is Hermitian. Show that (02 = 0.

9.1.15 A guantum mechanical expectation value is defined by
(4) = f ¥ (@AY () = (¥l A,

where A is a linear operator. Show thal demanding that {4) be real
means that 4 must be Hermitian with respect to o (x).

9.1.16 From the definition of adjoint [Bq. (9.27)], show that AT = A in the
sense that [ f Altyadr = [ 47 Ayudr, The adjoint of the adjoint is the
origingl operator,

Hint. The functions iy and v of Eq, (9.27) represent a class of fune-
tions. The subscripts 1 and 2 may be interchanged or replaced by other
subscripts.
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9.1.17 For a quantum particle moving in a potential well, V{x) = tmaw”z?, the
Schriidinger wave equalion is
A e e TR
—g— et ome' Y (@) = Ey (@)
or i
Az 2E

where 2 = (mw RV x. Since this operator is even, we expect solutions
of definite parily. For the initial conditions that follow, infegrate out
from the origin and determine the minimum constant 28 feo that will
leadto vr{mc) = Oineach case. (Youmay take = = Gasanapproximation
of infinity.)

(a) For an even eigenfunction,

=1  ¥0)=0.

(b} For an odd eigenfunction,
(D) =0, W)= 1
Note. Analytical solutions appear in Section 13.1,

9.2 Hermitian Operators

Hermitian orself-adjoint operators with appropriate boundary condilions have
the following properties that are of cxtreme importance in classical and quan-
tum physies:

1. The eigenvalues of an Hermilian operalor are real,

2. The eigenfumctions of an Hermitian operator are orthogonal.

3. The eigenfunctions of an Hermitian operator form a complele set, meaning
that under suitable conditions a function can be expanded in a series of
ecigenfunctions.”

Real Eigenvalues

We proceed to prove the first two of these three properties. Lot

Ly +hpwiy =0, or D) + dgwli) =10 (528

Assuming the exislence of a second eigenvalue and eigenfunetion

Lug +dywiy =0, or Llus) + i) = 0. (9.2

S e ——
— T e

¥This property is not universal, It does hold for our linear, second-order differcntial operarors
in Sturm-Liouville {self-adjoint) form. Gompleteness bs defined and discussed in more detail in
Section B4, A& proal that the eigenfunctions of our lingar, second-order, self-adjoint, differential
equations form a complele sel may be developed from the caleulus of variations of Section 186

e e e e T o E——— LR e e e e

LT T i

e T e
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Then, taking the Hermitian adjoint, using £ = £ we obtain

Loz 4 Ajwu; =0,  or  (u|L -+ (u;lA5w =0, {9.31)
where pand g are real functions of &, and w(x) is a real function. However, we
permil Ay, the eigenvalues, and we, the eigenfunctions, to be cu:umplex._ Multiply-
ing Eq. (9.29) by vj (or (u;]) and Eq. (9.31) by u; (or [«;}) and then subtracting,
wee have

WLy — wlu; = (0 — A dwuguj. [8.32)
We integrate over the range o =< x = b,
I b il
f wy Lt — f uplasde = (A5 — Ay) j wa i, (9.33)
w T &
or in Dirac notation,
(gl Las) — (Luglug) = (A — A {ugluq).

Sinece £ is Hermitian, the left-hand side vanishes by Eq. (9.27) and
B
{l_ﬁ e | f wuw da = {:-.:;'- — g |wg) = 0. (5.34)
e}

If i = j, the integral cannot vanish [w(z) = 0, aparl from isclated points],
except in the trivial case #; = 0. Hence, the coefficient (33 — 4.;) must be zero,

B i, (9.35

which states that the eigenvalue is real. Since A; can represent any one of
the cigenvalues, this proves the first property. This is an exact analog of the
nature of the eigenvalues of real symnmetric (and Hermitian) matrices (compare
Secltions 3.3 and 3.4).

Eeal eigenvalues of Hermilian operators have a fundamenial significance
in quantum mechanics. In quantum mechanics the eigenvalues correspond
to observable (precisely measurable or sharp) quantities, such as energy and
angular momenium. When a single measurement of an observable £ is made,
the result must be one of its elgenvalues. With the theory formuolated in terms
of Hermitian operators, this proof of real eigenvalues guarantees that the the-
ary will predict real numbers for these measurable physical gquantities. In
Section 18.6, it will be seen that for some operators, such as Hamiltonians,
the set of real eigenvalues has a lower bound. Physically important Hermitian
operators are real potentials V* = V and the momentum operator —éd /dir.,
The latter is Hermitian because upon using integration by parts and discarding
the inlegrated term, we have

di o i . o gt
: ag -
!'5‘2)-

(B0 e [ gt
_f.m( *’d.x') hm"( Y
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. Orthogonal Eigenfunctions
If we take i = j and if »; # 4; in Eq. (9.34), the integral of the product of the
two different eigenfunctions must vanish:

&
{uj |‘I,t.f;} = f '3&;—'1&{1,!'.:' da= 1. (93'[‘5:]
o

This condition, called orthogonality, is the continuum analeg of the van-
ishing of a scalar (or inner) product of two vectors.” We say that the
cigenfunctions wu;(x) and u;(x) are orthogonal with respect to the weighting
fimction w(x) over the interval [a, b]. Equation (9.36) constitufes a parlial
prool of the second property of our Hermitian operators. Again, the precise
analogy with matrix analysis should be noted. Indeed, we can establish & one-
to-one correspondence belween this Sturm-Liouville theory of differential
equations and the treatment of Hermitian matrices. Historically, this core-
spondence has been significant in establishing the mathematical equivalence
of matrix mechanics developed by [leisenberg and wave mechanics developed
by Schradinger. Today, the two diverse approaches are merged into the the-
ory of quantum mechanics, and the mathematical formulation that is more
convenient for a particular problem is used for that problem. Actually, Lhe
mathematical alternatives do not end here. Integral equations form a third
equivalent and sometimes more convenient or more powerful approach. Sim-

_ilarly, any two fimctions », v, not necessarily eigenfunctions, are orthogonal if
(vl = _,I:I‘IJ vruwds = 0.

This proof of orthogonality is not quite complete. There is a loophole
hecause we may have w; =¢ w; but still have 2; = ;. Such eigenvalues are
labeled degenerate. Hlustrations of degeneracy are given at the end of this
section. If 4; = 4;, the integral in Eq. (3.34) need not vanish. This means that
linearly independent eigenfunctions corresponding to the same ejgenvalue are
not automatieally orthogonal and that some other method must be sought to
hiain an orthogonal set. Although the eigenfunctions in this degenerate case
may nol. be orthogonal, they can always be made orthogonal. One method
is developed in the next section. See also the discussion after Eq. (4.13) for
degeneracy duc to syminetry.

We shall see insucceeding chapters that it is just as desirable to have a given
set of functions orthogonal as it is to have an orthogonal coordinate system.
We can work with nonorihogonal functions, bul they are likely Lo prove as
messy as an oblique coordinale system,

!

—— et

T e T S T

s e b e =

Tt et = =1y

e R e oy

EFrom the definition of Riemann integral,
b N
[ reoman= i (E f{xfjsr{m:lﬂ-x).
@ ] =

whers oy = o, @y = b, and o — 1y = A IFwe interpret o) and g} ag the ith components
of an A component vector, ten this sum (and therefore this integral) corresponds directly Lo
a scalar product of vectors, Eg. (LLL). The vanishing of the sealar product is the condition for
arthogonality of the vectors—or functions,
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SHE EXAMPLE .'9"_ 21 P

Fourier Series—Orithogonality To continue Example 9.1.4 with the inter
val —7 = % = m, the eigenvaluc cquation [Eq. (9.257],
i
dic?
subject to Eqo (2201, may deseribe a vibrating violin string with eigen-
funetinns—sin v subject to the boundary conditions sin(+nm) = 0 50 that n
is an integer, and the orthogonality integrals become

yix) + 1 y(x) = 0,

(a) [ sinmresinardy = Cpdypm, 20 =0
o Iy—T
For an interval of length 2x the preceding analysis guaraniees the Kronecker
delia in (&), Our Sturm-Liouville theory says nothing about the values of C,,.
Similarly, a quantum mechanical particle in a box may have eigenfunclions
cos it subject to the boundary conditions """ﬁ% lwetm = 0 giving integer n
again. Then
o4
)] cosmrcosnEdr = [ =0,
o Ljp—T
where I, remains undetermined. Actual caleulation yields
1 n, n'?":{:ll I, ﬂ-#ﬂ,
G = "

0, n=10, 2x, n=1L
Finally, inspection shows (hal

FrE g
e f sinmrcos iedr =10
A=t

always vanishes for all integral mand w. B

[ Expansion in Orthogonal Eigenfunctions

Starting from some Hamiltondan and its eigenvalue cquation H|d) = £}, we
determine the sel of eigenvalues E; and eigenfunctions |p;) taking the latter
16 b orthonormal; that is,

{exlost = &%

The property of completeness of the set |g;) means that ceriain classes of
{e.g., sectionally or plecewise continuous) functions may be represented by
a series of orthogonal eigenfunclions to any desired degree of accuracy. We
now assume |3 is in that class and expand it as

e =D agle).
7

We determine the coeflicient a; by projection

(61 = 2 > 01} = 2 X st = £ Yoy =
i 7 7

)




00

Chapter 8 Storm-Liouville Theory—0Orthogonal Funetions

Calling {g| Hyp;) = Hg j the matrix elements of the Hamiltonian, we have
the eigenvalue equations

> Hy jo; = Eay, ' (9.3T)
7

from which the column vector of admixture cocfficients a; may be determined,
along with the eigenvalue E. This usually infinite set of linear equations is
truncated in practice,

The choice of eigenfunction is made on the basis of convenience. To
illusirate the expansion technique, let us choose the eigenfunctions of
Example 9.2.1, cosnx and sinny. The cigenfunction series is conveniently
(and conventionally) written as the Fourler series

F: i) oo
Jx) = o )y Z(ﬂ«n COS T + by SN 7T,
Tee=

From the orthogonality integrals of Example 9.2.1 the coefliclents are given
by

m

;T 1
aw=}-f Fthcosntdl, b,=— Sy sinnt di, n="012.._.

T Jx
Square Wave Now consider the square wave T
g, D=x=m
Jix) = -5
~5 —m =¥ =

Direct substitution of /2 for f(1) yields
G =0
which is expected because of the antisymmetry, f(—x) = —J(x), and

0, meven,

It
w=—Iil—cosnT) =14 9y i
I —, nodd

'

Hence, the eigenfunction (Fourier) expansion of the square wave is

oy 2 g sin(E@n + 1 .
fly=— g e (9.38)

Additional examples, using other eigenfunctions, appear in Chapters 11-13.
: 1]
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(B Degeneracy

The concept of degeneracy was introduced earlier. If ¥ linearly independent
cigenfunctions correspond to the same eigenvalue, the cigenvalue is said to
be N-fold degenerale. A particularly simple illustration is provided by the
eigenvalues and eigenfunctions of the linear oscillator equation of classical
mechanics (Example 9.2.1). For cach value of the eigenvalue n, there are two
possible solutions: sinne and cosna (and any linear combination). We may
say the eigenfunctions are degenerate or the eigenvalue is degenerale.

When an underlying symimetry, such as rolational invariance, is causing the
degeneracies, states belonging to the same energy cigenvalue will then form
a multiplet or representation of the symmetry group. The powerful group—
theoretical methods are treaied in Chapter 4 in detail.

In Section 8.3, we show an alternative method of how such lunctions may
be made orthogonal,

EXERCISES

9.2.1 The functions uy (x) and w=(x) are eigenfunclions of the same Hermitian
operator but for distinel eigenvalues A and Az, Show that w (%) and wa ()
are lincarly independent.

$.2.2 (a) The vectors e, are orthogonal to each other: e, - e, = 0 for 7 # m.
Show that they are linearly independent.
(b} The functions () are orthogonal to each other over the interval
[@, b] and with respect to the weighting funetion wix). Show thal the
iny() are linearly independent.

9.2.3 Given that

Pixy=x and Qo) = %ln (i- ji)

are solutions of Legendre’s differential equation corresponding to diffor
enl eigenvalues: : .
{a) Evaluate their orthogonality integral

! & 14+
—Ir el
./;12 1(1—.’&')
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(b) Explain why these two funetions are not orthogonal, that is, why the
proaf of orthogonality does nol apply.

9.2.4 T3(z) = L and Vi(x) = (1 —a*)'* are solutions of the Chebyshev differ-
ential equation corresponding to different eigenvalues. Explain, in terms
of the boundary conditions, why these two functions are not orthogonal.

9.2.5 (a) Show that the first derivatives of the Legendre polynomials satisfy a
self-adjoint differential equation with eigenvalue L = nir+ 1) — 2.
(b) Show that these Legendre polynomial derivatives satisfy an orthog-
onality relation

i
f P (Pl — a2 )de =10, m £,
2

Note. In Section 115, (1 — )2 Pi(a) will be labeled an associated
Legendre polynomial, £} ().

9.2.6 A set of functions w,(2) satisfies the Sturm-Liouville equalion

d d -
T [f}[x}a'u-u[mjl] + Al ) = 0.

The funclions i, ) and i,{x) satisfy boundary conditions that lead Lo
orthogonality. The corresponding eigenvalues Jp, and A, are distinet,
Prove that for appropriate boundary conditions (%) and w,(x) are
orthogonal with p(x) as a weightling funetion.

9.2.7 A linear operator A has# distinet eigenvalues and # corresponding eigen-
functions: A = A Show that the n eigenfunctions are linearly inde-
pendent, A is not necessarily Hermmitian.

Hint. Assume linear dependence—that v, = 77 a . Use this rela-

' tion and the operator—eigenfunction equation first in one order and then

i in the reverse order. Show that a contradiction resulis.

9.2.8 With £ not self-adjoint, £ 5 £,

L+ gy, =0

LTU_:,: + Ahjwiy = 0.

(a) Show that

TP I

i b f
f vilugdn = f s Lvjdis,
a it

=
e Tl

= L e T e S

provided

T Lol

o

= vyl

el

e
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anrd
il
i — pyvg|, =0,
(b)) Show that the orthogonality integral for the eigenfunctions wy and

vy hecomes

b
f gl dr =10 (.ﬂ..j i .-'_f:}
€

9.3 {;,mm hlllldt{thlmgnna]tzatmn :

The Gram—Schmidt orthogonalization is a method that takes & nonorthogo-
nal set of linearly independent functions” and constructs an orthogonal set
over an arbitrary interval and with respect to an arbitrary weight or density
factor w that may or may not originale rom our basic Eg. (9.5). The choice
of these weights gives a particular set of orthonormal funections in the end
(orthogonal plos unit normalization). In the language of linear algebra, the
process is equivalent to a matrix transformation relating an orthogonal set
of basis vectors (functions) to a nonorthogonal set. The functions involved
may be real or complex, Here, [or convenience they are assumed to be real,
The generalization to more than one dimension or to complex cases offers no
difficulty. ;

Belore (aking up orthogonalization, we should consider normalization of
functions. So far, no normalization has been speacified. This means that

b
{pils) = [ giw dx = N,

)
bul no attention has been paid to the value of N;. We now demand that each
function g;(x) be multiplied by N{j s0 that the new (normalized) g will satisly

i
wied = [ i@ =1 (9.39)
and

1]
il = [ @@ @i =y, ©9.40)

Li3
Equation (9.39) states that we have normalized to unity, Including the prop-
erty of orthogonality, we have Eg. (9.40). Functions satisfying this equartion
are said to be orthonormal (orthogonal plus unil. normalization). Other nor-
malizations are certainly possible, and indeed, by historical convention, each
of the special functions of mathematical physics treated in Chapiers 12 and 13
will be normalized differently.

"Hueh a sel of lonetions !11i§£|f. wll arise from the solutions of a PIE, in which the sigenvalue was
independent of one or more of the constants of separation, Note, however, that the origin of the
set of functions is irrelevant to the Gram—Schmidt orthogonalization procedure,
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We consider three sets of functions: an original, linearly independent given
set (), =0, 1, 2, .. ; an orthogonalized set 1, () to be constructed; and a

final set of functions @, () that are the normalized . The original 4, may be

degenerate eigenfunctions, but this is not necessary. We shall have

wy{X) i) e X
Linenrly independent Linearly tndeperident Linenyly indspendent
Konorthogonal Crethogornal Chrthogormd
Linnormealized Lnnormztized Normulized
(Orthenorronal}

The Gram-Schmidt procedure takes the nth  function, vy, to be w,ix)
plus an unknown linear combination of the previous ¢. The presence of the
new i, (x) will guarantee linear independence. The requirement that ()
be orthogonal to cach ol the previous ¢ yields just enough constirainis to
determine each of the unknown coefficients. Then the fully determined 1, will
be normalized to unily, vielding @.(2). Then the sequence of steps is repeated
for 1r'[r'rf+I [‘3:}‘

We start with » = 0, letting

() = ug(x) (2.41)
with no “previous” ¢ to worry about. Then norralize
o) Vo)
D B = : 0.42
() L) i dar) 12 o [{ v yra) )12 N
Forn=1,let
Uy (x) = w () + aroeo(x). (£.43)

We demand that 1 () be orthogonal to ¢y(x). [At this slage the normalization
of v () is irrelevant.] This demand of orthogonality leads to

o b ]
f wmwdm=f ulqpuwdx+aiuf¢a§u:dx:t‘l. (9.44)
i@ e 3

Sinee ¢y is normalized to unity [Eq. (2.42)], we have

&
ap = — f uygy dir = — {g@plu}, (9.45)
41
fixing the value of ap. In Dirac notation we write Eq. (9.43) as

[} = faa} — {enlendlwo) (9.43a)
and B (9.44) a5 ]

0 = {wal) = {@olur) + o leelen)- (9.44a)
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In this form we recognize that the coefficient ayy is determined by projection,
similar to expanding a vector u in terms of Cartesian coordinate or basis
vectors %; as

u= (e R+ (0 Re)Rs + (0 Rk =Y uiks, (0.452)
i
Normalizing, we define
e iy
pi(@) = ——AE) = 94e)

(f viw )"’ = [l

Finally, we generalize so that

Y (x) A
i) = ————— ot (9.47)
( [ Pz w(x)dx)
whoere
Wi () = wy + apgo + Gugr + - + Beio 181 {9.48)
The coefficients a; are again given by projection (using orthogonality)
Biji= = f wipgw dr = —{@;lud. (9.49)

Eguation (942 holds for unit normalization. If some other normalizalion
is selected,

b
f [ ()P w ) da = NG,

then Eqg. (9.47) 1s replaced by

i) = N; &W (9.47a)
(f vwaa)™
and a;; becomes
i Al Latids (9.402)
Nj

Eruations (9.48) and (9.48) may be rewrillen in terms of projection
operators, M. If we consider the ¢.(x) to form a linear veetor space, then
the integral in Eq. (8.49) may be interpreted as the projection of w; into the g,
*eoordinate” or the jih component of u;. With

Piug(r) = { f ur-(!-]w_f{}}w[t}dz‘-] wi(x) = |y Hwslusl,

that is, Py = le;) {w;]. Equation (8.48) becomes

i—1
S [ 1= P_?-} ui(). (0.48a)
F=1
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Sublracling off the jth components, § = | to{ — |, leaves () orthogonal o
all the w;(x).

Nole that although this Gram—Schmidt procedure is one possible way of
constructing an orthogonal or orthonormal set, the funetions ¢:(x) are not
unique. There is an infinite number of possible orthonormal sels for a given
interval and a given density function. As anillustration of the freedom involved,
comsider two (nonparallel) vectors A and B in the wy-plane. We may normalize
A to unit magnitude and then form B’ = aA + B so that B’ is pemendicular to
A By normalizing B we have compleled the Gram—Schmidi orthogonalization
for two vectors. However, any two perpendicular unit vectors, such as & and ¥,
could have been chosen as our orthonormsal sel. Again, with an infinite number
of possible rolations of & and ¥ about the zaxis, we have an infinite number
of possible orthonormal sels.

Legendre Polynomials by Gram—Schmidt Orthogonalization Let us
form an orthonormal sct from the set of functions w,(x) = 2%, n=0, L2 __.
The interval is —1 = @ = 1 and the density function is w{x) = 1.

In accordance with the Gram-Schmidt orthogonalization process des-
cribed,

1
=1, hence = 950
Uy | = (9.50)
Then
1
Prulx) =$+ﬂmE (9.51)
and
1
= f L dr=0 (9.52)
—1 /2
by symmetry. We normalize o) to obtain
3
@) = J;y (9.53)
Then continue the Gram—Schmidt process with
w«z(m}—xz'w—mi ; ﬁm (0.54)
n‘;"{i 3 2 s s
where
1 xE \"@
ey = — — G e 0.65
w=-[ % 3 e

1 ]
fla) = —f \/gxﬂdm= 0, (9,56}
—1
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again by symmeitry. Therefore,

; o 1
pal@) =2* - 2, (9.57)
and, on normalizing Lo unity, we have
. ,l"-_ Los g
walir) = V3 E[:’-}::; — 13 (9.565)
The nex|. funclion g becomes
,l"? 1
) = 1III.' ol 2—){31“5 — B, (9.59)

Reference to Chapter 11 will show thal
jZn+1
enl0) = || —5— Fal), (EL60)

where I, (xr)is the nth-order Legendre polymornial. Our Gram—Schmidi process
provides a possible, but very cumbersome, method of generating the Legendre
polynomials. Tt illustrates how a power series expansion in w,(a) = &%, which
is not orthogonal, can be converted into an orthogonal series over the finite
interval [—1, 1].

The equations for Gram—Schmidt orthogonalization tend to be i1l condi-
tioned because of the subiractions. A technigue lor avoiding this difficulty
using the polynomial recurrence relation is discussed by Hamming.®

In Example 9.3.1, we have specified an orthogonality interval [—1, 1], aunit
weighting funetion, and a sel of lunctions, =%, to be taken one at a time in
increasing order. (iven all these specifications the Gram—Schmidl procedures
is unigue (to within a normalization factor and an overall sign as discussed sub-
sequently). Our resulting orthogonal set, the Legendre polynomials, &, through
I, forms a complete set for the description of polynomials of order < over
[—1. 1]. This concepl of compleleness is taken up in detail in Section 9.4,
Expansions of functions in series of Legendre polynomials are discussed in
Section 11.3. H

i Orthogonal Polynomials

The previous example was chosen stricily to illustrate the Gram-Sclomide pro-
cedure, Although it has the advantage of introducing the Legendre polynomi-
als, the initial lunelions w, = " are not degenerate cigenfunctions and are
not solutions of Legendre's equation. They are simply a set of funclions that
we have rearranged (o create an orthonormal set for the given interval and

SHamuning, LW l[.iﬂ;.fs').-_?‘f'n;:.;ﬁrrir:rﬂ Methods Jor Siienfisls and Engineers, 2nd ed. MeGraw-Hill,
Mew York. See Section 27.2 and references given there.
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Table 9.3 i Weighting o =
Orthogonal Polynomials Polynomials Interval Funetion o x)  Standard Normalization
Generated by s . L y i M W
Gram-Schmidt gen it f_.[ MAOPR = T
Orthogonalization of 1 1
il =x"n= Shifted Lagendre O=w=1 1 L lf';[xilﬂfi;r= —
3,200 -
Lagucrre 0 =& <o e f [Latade Tde =1
I
Associated Laguerre O=x-=n0 algr [ . [Lﬁ(zr;}]”‘m“e""‘dx = G :-Ik}!
a L
z = gl .
Harmike —0d = 00 g f [P e e = 2R L)

given weighting function. The fact that we obtained the Legendre polynomi-
als is not quite magic but a direct consequence of the choice of interval and
weighting lunction. The use of w,(x) = &, bul with other choices of interval
and weighting function or a different ordering of the functions, leads to other
sels ol orthogonal polymomdials as shown in Table 9.3, We consider these poly-
nomials in detzil in Chapiers 11 and 13 as solutions of particular differential
equations.

An examination of this orthogonalizalion process reveals two arbitrary
features. First, as emphasized previously, it is not necessary to noimalize the
functions to unity. I the example just given, we could have required

€

t 2
[ @@ = = (9.61)
and the resulting set would have been the actual Legendre polynomials.
Second, the sign of @, is always indeterminate. In the example, we chose the
sign by requiring the coefficient of the highest power of x in the polymomial
Lo be positive. For the Laguerre polynomials, on the other hand, we would
require the coefficient of the highest power to be (=17 /5,

EXERCISES

9.3.1 Rework Example 9.3.1 by replacing o, () by the convenlional Legendre
polynommial, £ lx):

1
o
[ B@ras= 2
Using Fas. (9.47a) and (9.49a), construct Py, Py(x), and Pa().
ANS. Py=1, Pi=z P=32"-1



9.2  Gram-Schmidt Orthogonalization a0

9.3.2 Following the Gram—Schmidt procedure, construet a set of polynomials
P#(x) orthogonal {unit weighting factor) over the range [0, 1] from the
sel [1, x]. Normalize so that P (1) = 1.
ANS, Pz} =1,

By =3x— 1,

Fix)=6z" — 6B+ 1,

E(x) = 202 — 30z + 122 — L.
These are the first four shifted Legendre polynomials,
Note. The asterisk is the standard notation for “shifted": [0, 1] instead of
[—1, 1]. It docs not mean complex conjugate.

9.2.3 Apply the Gram—Schmidt procedure to form the first three Laguerre
polynomials, using
wplm =o', n=0,1,2,..., 0=w=noo wxl=e~

The conventional normalization is

nllnt = [ L) L™ = B
L]

A BT iy i J‘”;” _
9.3.4 You are given
{a) asetof functions u(X) =" n=0012...,
(b)) an interval (), co), and
(&) aweighting function wix) = xe™*. Use the Gram-Schmidt procedure
to construct the fivst three orthonormal functions [rom the set
() for this interval and this weighting fimetion.

ANS. () =1, @ x) = (r—2)/vZ, la) = (2% -6z +6)/2./3.

« 9.2.5 Using the Gram—Schimidt orthogonalization procedure, construct the

lowest three Hermite polynomials, using
wm) =", n=0,1,2,..., -oc=z=<oa w@=e*

For this set of polynomials the vsual normalization is
oo
(H | Hyt = f Ho () Ho( s u(a die = S 2™mlm 2
—zd

ANS, HU. — 1.- Hy = 23’,‘, IIQ = 41-.'1‘2 — 2

9.3.6 As a modification of Exercise 9.3.5, apply the Gram—Schmidt orthogo-
nalization procedure to the setw,(x) =" n=012 ..., 0 =% = 20,
Take w(z) to be cxp|—a~]. Find the first two nonvanishing polynomials.
Normalize so that the coefficient of the highest power of & is unity. In
Exercise 0.3.5, the interval {—oo, 22) led to the Hermite polynomials,
These are certainly not the Hermite polynomials,

ANS. @w=1 @ =%—n",
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9.3.7 Form an orthogonal set over the interval ) = x = oo, using u,(x) =
e ™ on=12 3, .... Take the weighting factor, wi{x), to be unity, These
functions are solutions of w — W, = 0, which is clearly already in
Sturm-Liouville (self-adjoint) form. Why doesn’t the Sturm-Liouville
theory guarantee the orthogonality of these lunetions?

‘14 ::ﬁ-pnipletenéss of Eigenfunctions .

The third important property of an Hermitian operator is that its eigenfunctions
form a complete set. This completeness means that any well-behaved (al least
plecowise conlinuous) function F(x) can be approximated by a series

F) =Y anpul@) (9.62)
n=0

to any desired degree of accuracy.” More precisely, the set g@,(x) is called
complete!® if the limit of the mean square error vanishes:

b e 2
tim 1 [Ffﬂ?} X Z:J%Wn':m}] w{z) dir = 0. (9.63)
=

We have not required that the error vanish identically in o, 8] bul only that
the integral of the ervor squared go to zero. This convergence in the mean
[Eq. (9.63)] should be compared with uniform convergence [Section 5.5,
Ba. (5.43)). Clearly, uniform convergence implies convergence in the mearn,
but the converse does not hold; convergence in the mean is less restrictive.
Specifically, Eq. (9.63) is not upset by piecewise conlinuous functions with
only a finite number of finite discontinuitics. Equation (9.63) is perfectly ad-
equate for our purposes and is far more convenient than Eq. (5.43), Indeed,
sinee we frequently use expansions in eigenfunctions to describe discontinu-
ous functions, convergence in the mean is all we can expect.

In the language of linear algebra, we have a linear space, a lunclion vec-
tor space. The linearly independent, orthonormal functions g2} form the
basis for this (infinile-dimensional) space. Equalion (9.62) is a stalement, that
the Tunctions g,(x) span this linear space. With an inmer product defined by
Eq. (9.36), our linear space is a Hilbert space spanned by the complete sef
of basis states g,(x); it conlains all square-integrable functions F that can be
expinded in the sense of Eq. (9.63).

The question of completeness of a set’of lunclions is oflen delermined by
comparison with a Laurent series (Section 6.5). In Section 14.1, this is done
for Fourier series, thus establishing the compleleness of Fourier series, For
all orthogonal polymomials mentioned in Section 9.3, it is possible to find a

Ff we have a finile set, as with vectors, the summation iz over the number of linearly independent
moembers of the set.
100y authors use the ferm alossd here.
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polynomial expansion of each power of 2,
i
=) a;Pia), (9.64)
$={)

where Fi(z) is the ith polynomial. Exercises 11.4.6, 13.1.8, and 13.2.5 are spe-
cific examples of Eq. (8.64). Using Ea. (9.64), we may reexpress the Laurent
expansion of f{2) in terms of the polynomials, showing that the polynornial
expansion exists (when it cxists, it is unigue: Exercise 8.4.1). The limitation
of this Laurent series development is thal it requires the function to be ana-
Iytic. Bguations (9.62) and (9.63) are more general. Fla) may be only piece-
wise continuous. Numerous examples ol the representation of such piecewise
continuous functions appear in Chapter 14 (Fourier series), A proof that our
stirm-Liouville eigenfunctions form complete sets appears in Courant and
Hilbert."!
In Eq. (9.62) the expansion coefficients a,,, may be determined by

B
A = f Flalon(mwix)de = (.| F). (657

This follows from multiplying Faq. (9.62) by e ()w(r) and integrating. In Dirac
notation,

IF) =) aulgs)  implies (pnlF) = Gnlgmlgn) =Y ndpn = am
" e i

provided the |g@,) are normalized to unity. From the orthogonality of the eigen-
funetions, g, (=), only the mth term suwrvives. Here, we see the value ol orthog-
omality. Equation (9.65) may be compared with the dot or inner product of
vectors (Section 1.2) and a,, interpreted as the wth projection of the function
(). Offen, the coefficient o, is called a generalized Fourier coeflicient.

For a known function F(x), Eq. (9.65) gives a,, as a definite integral that
can always be evaluated, by computer if not analytically.

For examples of particular eigenfunction expansions, see the following:
Fourier series, Chapter 14; Legendre series, Section 11.3; Laplace series,
Seclion 11L§; Bessel and Fourier-Bessel expansions, Section 12.1; Hermite
series, Section 13.1; and Laguerre series, Section 153.2. An explicit case of a
Fourier expansion is the square wave (Example 9.2.2). The corresponding
Hilbert space contains only periodic functions that can be expanded in a series
of sin e, cosny, the eigentunciions of one-dimensional square-well potentials
in quantum mechanics under suitable boundary conditions.

It may also happen that the eigenfimetion expansion [Eq. (9.62)] is the ex-
pansion of an unknown F{2) in a series of known eigenlunciions g,0x) with
urknown coefficients a,,. An example is the quanturmn chemist's attempt to
deseribe an (unknown) molecular wave [unetion as a linear combination of
kmown atomic wave functions, The unknown cocfficients a,, would be deter-
mined by a variational technigque, Hayleigh—Hitz (Section 18.6).

N Gourant, B, and Hilbert, 0. (1955). Methods of Maolbematioal Fhazies (English L%ansl:t.f.innj,
Vol, L, Interscience, New York. Reprinted, Wiley (1958), Chap. 0, Section 3.
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Bessel's Inequality

I the set of functions ¢@,(2) does not form a complete set, possibly because we
have not included the required infinite number of members of an infinite set, we
are led to an inequality. First, consider the case of a finite sum of components.
Lt A be an 7 component veclor,

A =epa + ool o 4 By, (0.66)

in which e; form a set of orthonormal unit vectors and o, is the corTesponding
cornponent {projection) of A; that is,

hy = A 2. {-ﬂﬁ?}
Then

i 2
(A - Zeiai) =0, (9.68)
fa=1

If we sum over all # components, clearly the summation equals A by
Eq. (9.66) and the equality holds. If, however, the summation does not. in-
clude all # componenis, the inequality results. By expanding Eq. (2.68) and
remembering that the orthogonal unit vectors satisly orthogonality relations -

@2y 8y = ﬁi_f: {969}

we have

A2 =N, (9.70)

This is Bessel's inequality. _
For funciions we consider the integral

2

] i i f
f [I @)= ﬁi%{m')] wir)de = 0. (8.71)
a =1

This is the continuum analog of Eq. (2.63), letting 7 — oo and replacing the
summation by an integration. Again, with the weighting factor wix) = 0,
the integrand is normegative, The integral vanishes by Eq. (8.62) if we have
a complete set. Otherwise it is positive. Expanding the squared term, we
obtain

e e ey

el i b | 7
f e Pu@dr—2) e [ f@o@u@d+ ) df =0 ©72)
o =1 e =1

Applying Fq. (8.65), we have

B ki
f [FlPw(x)de = Zf{%- (9.73)
i i=1




el
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Hemnce, the sum of the squares of the expansion coeflicients o; is less than or
equal to the weighted integral of [ f{x)]%, the equality holding if and only if the
expansion is exact—ithat is, if the set of funciions ¢, (%) 15 2 complete =et and
T = 30,

In later chapters, when we consider eigenfunctions that form complete
sits (such as Legendre polynomials), Eq. (9.73) with the equal sign holding is
called a Parseval relation.

Bessels inciguality has a variety of uses, including proofl of convergence of
the Fourier series.

._'::; B Schwarz Ineguality

The frequently used Schwarz inequalily is similar (o the Bessel incquality,
Consider the quadratic equation with unknown

> e+ b =) a2 (s:: + :_) = 0. (9.74)
i=1 =1 i

If b; for; = constant ¢, then the solution is » = —e. If &; /2; s not & constant,
all terms canmot vanish simultaneously for real @ Therefore, the solution must
be complex. Expanding, we find that

it b T
Y @42 abi+ Y b =0, (9.75)
i=1 i=1 dm |

and since & is complex (or = —h; /at;), the quadratic formula’ for & leads to
n 2 [ i
T = Zug) (Z b%), (9.76)
= =1 i=1

the equalily holding when &y /o, equals & constant,
Cmiee more, in terms of vectors, we have

(a- by = a’b* cos® = a®b?, (9.77)

where @ is the angle included between a and b,
The analogous Schwarz inequality for functions has the form

2 b 3] R
= f L) [Cwlx)de j g (wglahe(x)dy, (9.78)

I
f S () da

the equality holding if and only if g(r) = «f(x), with « being a constant.
To prove this function form of the Schwarz inequality,™® consider a complex
funclion (&) = () + Ag(e) with 4 a complex constant, The functions 7(x)
and gz are any two functions (for which the integrals exist). Mulliplying by

Eyith diseriminant 5% — dee nesative (or zero).
YA alternale derivation is provided by the inequality S TLFEa e — Flnetal LA —
fladgte)lwlxwydardy = 0,
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the complex conjugate and inlegrating, we obtain y
b

b b _ b
f g&“ﬁw{x]dxsf f*fw{:ﬂ]dx+lf .f“gw{m}dm-l—}.*[ g fuwix)dx

b
e [ growix)de = 0. 9,754
o

The =0 appears since ™ is normegative, the equal (=) sign holding only
if i) is identically zero. Noting that A and 2% are linearly independent, we
differentiate with respect to one of them and set the derivative equal to zero
to minimize j: i * yfrodan

q b ] o B
| — | P*Yu@)dr= f " fwlyde + 2 f g ) de = 0.
| da* Jy f s
il ' This yields
b
i )i
L SR OARIOR (9.508)
iy 9 gw(n)de
i
Taking the complex conjugate, we oblain
i
F b =
] [ e et
it L OIS, (9.80b)
Jo gaw(z)dz
Substituting these values of & and A back into Eqg. (9.79), we obtain Eq. (5.78),

the Schwarz inegualily.

In quanturn mechanics (&) and g{x) might each represent a state or con-
figuration of a physical system. Then the Schwary inequalily guarantees thaft
the innmer product f:’ T g (rdy exists, In some texts, the Schwarz in-
equality is a key step in the derivation of the Heisenberg uneerlainly principle.

The function nolation of Egs. (9.78) and (9.79) is relatively cumbersome.
In advanced mathematical physics, and especially in quantum mechanics, it is
cormmor to use the Dirae bra-ket notation:

B
(flg) = f P di.

; _:.' Using this new notation, we simply understand the range of integration, (o, 0},
and any weighting function. In this notation the Schwars: inequalily becomes

1(S1g} P < (1) {gla). (9.78a)
If (=} is a normalized eigenfunction, g;(x), K. (9.78) vields

|
i
3
|
th

e

oy i

T e

b
g by = : I; T ) Flahne(x)da, (B.81)

a result that also follows from Eqg. (9,730,

SR i LNt st sk

Fir]
o v
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summary of Vector Spaces—Completeness

Here we summarize some properiies of vector space, first with the vectors
taken to be the familiar real vectors of Chapter 1 and then with the vectors
laken to be ordinary functions—polynomials, The concepl of completeness
is dewveloped lor finite vector spaces and carried over into infinite vector
BPECeS,

1w

1f.

21,

Wi shall describe our vector space with a set of » linearly independent
vectors e, i =12, ... . nIfn=3e =% e;: =%, and ez = Z The n e,
span the linear vector space and are defined to he a basis,

We shall deseribe our vector (finetion) space with a sct of i linearly inde-
pendent functions, @;(x), 1 = 0,1, ..., n— L The index i starts with 0 to
agree with the labeling of the classical polynornials. Here, ¢ () is assumed
to be a polynomial of degree 4. The n gy () span the linear vector (Tunelion)
space forming a basis.

. The vectors in our vector space satisly the following relations

(Bection 1.2; the vector components are numbers);
a. Vector addition is commutative u+-v=v+u
b Vector addition is associalive [m4v]l+w=u+[v+w]

c. There is a null veclor O+v=vw

d. Multiplication by a scalar
Dhstributive aln + v] = an + av
Distribnilive (o + b =qu+ bu
Associative albu] = (objn

e. Multiplication
By unit scalar lu=mu
By zero - =0

. Negative veclor (—ju=—u

The lunctions in our linear funetion space satisfy the properties listed for
vectors (substitute *function” for “vector™):

a. J(x) + gCe) = glx) + f(x)

be [ + gl + R = () + LoCe) + k()]

c. 0+ f(x)= fiz)
. al f{xz) + g(x)] = af(x) + ag(x)
(e + b)f (%) = af () + b (x)
albr(z)] = (ab) flx)
e, L. fla) = f(x)
0 flx)=0
I (=1)- Fa) = — f(x).
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v, In n-dimensional vector space an arbitrary vector ¢ is described by ils n
components (0, €z, .. ., Ca) OT

T
e = Z(-‘fﬂf? 0 =80,
i=1

When (i) # e; are linearly independent and (ii) span the n-dimensional
vector space, then the e; [orm a basis and constitute a complete set

3f, In n-dimensional Munction space a polynomial of degree m = n— 1 is
described by

_ el sy
(6031407
When (i) the #ng(x) are linearly independent and (i) span the n-
dimensional function space, then the ¢;(x) form a basis and conslitute
a complete set (for describing polynomials of degree m = n— 13.
4w. An inner product (sealar, dot product) is defined by

c.d= Zn:ﬂ;df.
=1

If ¢ and d have complex components, the inner product is defined as
57" | 7d;. The inner product has the properties of
a. Distributive law of addition e¢-(d+e)=¢-d+c-e
b. Scalar mulliplication coaod=ac-d
o, Complex conjugation e-d={d-e)*
Af. An inner product is defined by

ni—L
flo) =Y cwl®), o
1=

.3
{flg} = f FH)g(e)w(x)da.

The choice of the weighting function w(x) and the interval (o, b)
follows from the differential equation satisfied by (%) and the bound-
ary conditions (Section 9.1). In matrix terminology (Section 3.2) lmyisa
columm vector and { /] is a row vector, the adjoint of | £).
The inner product has the properties listed for veclors:
a (flg + Rk = (Flg} + U1k
b. {flag) = alSlg}r
c. {flg) = glf)*
5v. Orthogonality:

e_f'e.?'=ﬂr L

If the n e; are not already orthogonal, the Gram-—Schmidl process may be
used to create an orthogonal sel.
5f. COrthogonality:

b
{gsles) =f e e Dwx)de =10, 17

If the 42 ¢; () are not already orthogonal, the Gram—Sch midt process {Sec-
tion 9.3) may be used to create an orthogonal sel.
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Gv. Delinition of norm:

1/2
R
w108 2
le| = (e e)* = (Zﬂi) -
i=1

The basis vectors e; are taken to have unit norm (length) e; - e; = 1, The
components of ¢ are given by
ci=epary e Lodian

6. Definition of norm:

b Lz ﬂ:l 172
uf|r_={,r|.ﬂ-l-’2=[[ If{ﬂ:}lzw{x)dx} =[L|ci;2] :

i=ll
Parsevals identity: || F| = Ounless (%) is identically zero. The hasis fune-
tions gy{) may be taken to have unit norm (unit normalization)
llgsll = 1.
Note that Legendre polynomials are not normalized Lo unity.
The expansion coefficients of our polynomial fix) are given by
ey ={aylfy, 4=0,1,...,n—1
Tv. Bessel’s inequality:

cc;er

Ifthe equal sign holds for all ¢, it indicates that the e; span the vector space;
that is, they are complete,
Tf. Bessel's inequality:

b
uin = [ if@Pu@de= Y ek,
o i
I the equal sign holds for all allowable f, it indicates that the ¢;(x) span
the function space; that is, they are complete.
Bv. Schwarz inequality:

ce-d=|e|-dl

The equal sign holds when e is a multiple of d. If the angle included between
canddis @, then |cosf| = 1
Bf, Schwarz inequality:

LA = (A1 (glgy ' = 1] - -

The equals sign holds when () and g(x) are linearly dependent; that is, .
when fia) is a multiple of g{z).
9y, Now, let n — oo, forming an infinite-dimensional linear vector space, [2,
In an infinite-dimensional space our vector ¢ is

o
¢ = Z(:;H-.:.
. F=l
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We require that

]
EG? = 20,
i=l

The components of ¢ are given by

g=e;.c, =12 ..,°c0

T LIS AR R I o s sl

exactly as in a finite-dimensional vector space.

9f. Then let 1 — oo, forming an infinite-dimensional vector (function) space,
L2 Then the superseript 2 stands for the guadratic norm [Le., the 2 in
| £(z)]*]. Our functions need no longer be polynomials, bul we do require
thal f{x)beatleast plecema{, contimeons (Dirichlet conditions for Fourier
series) and that {f| [} = _,l" | ()P w(x)dir exist. This latler condition is
olten stated as a requiremnent that. f(x) be square integrable.

Cauchy sequence: Let i :

T
fla) =) eailz).
=l

() — fala)| = 0 as n— o0

or

wixhde =10,

il 2
i [ |7 -3 s

{hen we have convergence in the mean. This is analogous to the partial
sum—anchy sequence criterion for the convergence of an infinite series
{Section 5.1).

Fevery Cauchy sequence of allowable vectors (square integrable, piece-
wise continuous functions) converges to alimit vector in our linear space,
the space is said to be complete. Then.

oG
fl) = Z coi(a)  (almost everywhere)
i=h
in the sense of convergence in the mean. As noted previously, this is a
wealer requirement than pointwise convergence (fixed value of ) or uni-
form convergence.

- Expansion (Fourier) Coefficients
For a function f its Fourier cocfficients are defined as
“__‘.%l.llr}:l 'i-=u,1,....|001

exactly as in a finite-dimensional vector space. Hence,

F@) =3 loil Mg,
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Alinear space (finite- or infinile-dimensional) that (i) has an inner product
defined, (| g}, and (i) is complete is-a Hilbert space.

Infinite-dimensional Hilbert space provides a natural mathematical frame-
work for modern quanium mechanics becanse bound-stale wave imections
are normalized (square-integrable) and usually are eigenfunctions of some
Hamiltonian that provides a basis of the Hilbert space. A physical state may
be expanded in a set of basis vectors, which are eigenstates of some observ-
able. The expansion coeflicients squared give the probabilities of the different
eigenvalues of the observable in the given state, Apart from quantum mechan-
ies, Hilberl space retains its abstract mathematical power and heauty, but the
necessity for its use is reduced.

The Sturm-Liouville theory of second-order ODEs with boundary conditions
leads to eigenvalue problems whose solutions are eigenfunctions with orthog-
onalily properties. Special functions, such as Legendre polynomials, Bessel
functions, and Laguerre polynomials, arise in this context. Bigenfunction ex-
pansions are important in quantum mechanics and many other areas of physics
and engineering,

4 :( o .T":--E e i o “‘} 5
orial Contess of Matheraticiar

i

clops "3%’% atheratics in

EXERCISES

89.4.1 A function () is expanded in a series of orthonormal eigenfunctions
F@) =Y tupala).
r=0

Show that the series expansion is unique for a given set of ¢, (%), The
Tunetions g0 are being taken here as the basis vectors in an infinite-
dimensional Hilbert space.
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9.4.2 A function jt:r:} iz represented by a finite sel of basis functions (),

N
@ =" cwil).

i1
Show that the components ¢; are unique; that no different set ¢f exists.

Note, Your basis functions are automatically linearly independent. They
are not necessarily orthogonal.

9.4.3 A function f(x) is approximated by a power series Y/7) ¢z’ over the
interval [0, 1]. Show that minimizing the mean square error leads to a
set of linear equations

Ae=bh,

where
1 s 1
Ai — J = — i i= 3 Dy ey BT
_f L:{: {i-'x 'i.-l-j'l'.[:l vl'-,__':l" {:I:i:l'2 n 1
and
1 ¥
b'i=f 2 flade, =012, ...,n—L
0

Nate. The Ay are the elemenis of the Hilbert matrix of order n. The
determinant of this Hilbert matrix is a rapidly decreasing function of
n Form = 5, detA = 3.7 x 1071 and the sct of equations Ac = b is
hecoming ill conditioned and unstable.

9.4.4 In place of the expansion of a function F(x) given by

o0
F(@) = aupn(2)
n=1
with

]
jhe f Fla)puw()da,

take the finite series approximalion

b

F(@) = ) cupul®).

n=l
Show that the mean square error

I m 2
f |:F(a".]| - Ec,,qaﬁ{:r]:] wia) da
o =l

is minimized by taking ¢, = Gg.

Note. The values of the coellicients are independent of the number
of terms in the finite series. This independence is a consequence of
orthogonality and would not hold for a least-squares fit using powers
ol
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9.4.5 From Example 922,

] B2 O<zarm] 2k sin(2n + 1)
ﬂ'ﬂ_{—hf@,—f{xﬁﬂ}_?z 2n+1

{a) Show that

fe=i)

. AR
f@lde =Tz = 2{:2 n+1)2
-
For a finite upper limit, this would he Bessel's inequality. For the
upper limil, oo, this is Parseval’s identity,
(b) Verify that

A ;
h = (2n+ 1)
2 T ;

by evaluating the series,
Iint. The series can be expressed as the Riemann zeta function.

89.4.6 Differentiate Fq (979,

(W) = (7L + 20 flg) + A% (gLf) + 22 {glg),

with respect fo A% and show that you get the Schwarz inequality
[Eq. (9.78)].

8.4.7 Derive the Schwarz inequality from the identity
b 2 b ]
[ @] = [r@re [ wera

i b opb . <
=5 | [ @0 - rwaerazay

9.4.8 Ifthe functions f{x) and g(z) of the Schwarz inequality [Eq. (9.78)] may
be expanded in a series of eigenfunctions g;(x), show that Eq. (9.78)
reduces to Eq. (8.78) (with # possibly infinite).

Note the description of f() as a veclor in a function space in which
() corresponds to the unit vector e,

9.4.9 The operator A is Hermitian and positive definite; that is,

b
f fHf de =10
fr
Prove the generalized Schwarz inequality:
| pB z 1 &
f JrHy de _‘:] _r'*Hfdmf o iy dae,
i i @€
9.4.10 A normalized wave function yi(z) = Y} 00, aue,(x). The expansion

cocfficients a, are known as probability amplitudes, We may define
a densily maltrix p with elements p; = a;. Show that

(0% = py
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or
o =p.
This result, by definition, makes g a projection operator,
Hind: Use
f Wrtrda = 1,
9.4.11 Show that
{a) the operator
|gi) ]
operating on
FO=esltlps) '
i
vields cilgt)),  [tley) = @5(L).

(b) > lexdles] =1
1

() For {xlg,) = ¢ /2 derive from (&) the Fourier integral of the
function f(t) and from (b) the Fourjer integral representation of
Dirac’s § function (sec Chapter 1). Note that p is a continuous
variable (momentum) replacing the discrete index 4.

This operator is a projection operator projecting f(x) onto the
ith coordinate, selectively picking oul the ith component e;|g;) of
Six).
Hint. The operator operates via the well-defined inner product. In the
coordinate representation you actually have to work with (e} (ool =
i) ().
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