In this section we develop a method of obtaining one solution of the linear,
second-order, homogeneous differential equation. The method, a series expansion,
will always work, provided the point of expansion is no worse than a regular singu-

-lar point. In physics, this very gentle condition is almost always satisfied.
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A linear, second-order, homogeneous diflerential equation may be put in the
form
2

i}z‘ + P(x) vy O(x)y =0. (8.20)

dx dx _
The equation is homogeneous because each term contains y(x) or a derivative;
linear because each y, dyjdx, or d*y/dx* appears as the first power—and no pro-
ducts. In this section we shall develop (at least) one solution of Eq. 8.20. In Section
8.5 we shall develop a second, independent solution and prove that no third,
independent solution exists. Therefore, the most general solution of Eq..8.20 may _
be written

P = e (%) + 2.  (8.20a)

Our physical problem may lead to a nonhomogeneous, linear, second-order
differential equation
2

3 2+ P(x) s + 0(x)y = F(x). (8.206)
The function on the right, F(x), represents a source (such as electrostatic charge)
or a driving force (as in a driven oscillator). Specific solutions of this nonhomogene-
ous equation are touched on in Ex. 8.5.19. They are explored in some detail, using
Green’s function techniques, in Sections 8.6, 16.5, and 16.6, and with a Laplace
transform technique in Section 15.10. Calling this solution ¥,, we may add fo it
any solution of the corresponding homogeneous equation (Eq 8.20). Hence, the
most general solution of Eq. 8.205b is

¥(x) = ¢y (x) + c;p.(x) + J’p(x)- ) (8.20¢)

The constants ¢, and ¢, will eventually be fixed by boundary conditions.

For the present, we assume that F(x) =0, that our differential equatlon is
homogeneous. We shall attempt to develop a solution of our linear, second-order;
homogeneous differential equation, Eq. 8.20, by substituting in a power series with
undetermined coefficients. Also available as a parameter is the power of the lowest
nonvanishing term of the series. To illustrate, we apply the method to two import-
ant differential equations. First the linear oscillator equation

2y
(L? _I_ wa = 0, (8.2')

with known solutions y = sin wx, cos wx.

We try
W) = xMag + a,x + ax7 + azx® + )
= Y a, L gy #0, (8.22)
i=o

with the exponent & and all the coefficients a, still undetermined. By differentiating
twice, we obtain
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== Y ak o+ DAY
A=0

d’y ¢ K+ i—2

—5 = 3 ayk + Dk + A — " .

dx i=o

By substituting into Eq. 8.21, we have
Zal(k+/)(k‘+l A2 4 @ ¥ axtA =0, (8.23)
A=0 =0

From our analysis of the uniqueness of power series {Chapter 3) the coefficients of

each power of x on the left-hand side of Eq. 8.23 must vanish individually.

The lowest power of x appearing in Eq. 8.23 is x*7%, for 2 =0 in the first
summation. The requirement that the coefficient vanish' yiclds

aok(k — 1) =0

We had chosen a, as the coefficient of the lowest nonvanishing terms of the series
(Eq. 8.22), hence, by definition, @, # 0. Therefore we have

k(k — 1) = 0. (8.24)

This equation, coming from the coefficient of the lowest power of x, we call the
indicial equation. The indicial equation and its roots are of critical importance to
our analysis. Clearly, in this example we must require either that k =0 ork = 1.
Before considering these two possibilities for k, we return to Eg. 8.23 and de-
mand that the remaining net coefficients, say the coefficient of x**/ (j > 0), vanish.

~ We set A = j + 2'in the first summition and A = in the second. (They are mdcpen-

dent summations and A is a dummy index.) This results in

J+2(k+1+2)(k+1+1)+wa —0

or

G)Z

P P T

(8.25)

Ajya =~

This is a two-term recurrence relation. Given a;, we may compute\ a;,, and then
@jr4, Gj4, and so on up as far as desired. The reader will note that for this
example, if we start with a,, Eq. 8.25 leads to the even coeflicients a, , a,, etc,,
and ignores 4, a5, &5, etc. Since a, is arbitrary, let us set it equal to zero (cf.
Ex. 8.4.2 and 8.4.3) and then by Eq. 8.25.

ay=ds=d; =" =0,

and all the odd power coefficients vanish. Do not worry about the lost odd powers;
the object here is to get a solution. The rejected odd powers will actually reappear
when the second root of the indicial equation is used.

Returning to Eq. 8.24, our indicial equation, we first try the solution k = 0.

1 Uniqueness of power series, Section 5.7.
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The recurrence relation (Eq. 8.25) becomes

[12)
Qiyy = —a@; ————,
dk TG+ D
which leads to
-wZ L[)Z
az’-"“om:_? '
2 w4
a, —023‘4 +?a0,
wz w(’
ay, = ——a45.6= —6—rao,-etc

By inspection {and mathematical induction)”

ln

= (=1

(2n )'
and our solution is.
- (wx) (wx) (ox)
"(x"“’:““[' B T T
= dg COS WX.
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(8.26)

(8.27)

(8.28)

I we choose the indicial equatlon root k=1 {Eq. 8.25) the recurrence relation

becomes
w 2

HTESTTESY

iy = —

- Substituting in j = 0, 2, 4, successively, we obtain

w? w?

a; = —a ——— dyg;

2 02 3 3? 03
wl +w4

Ay = 1y —— = —a

4 ‘4.5 510
w? w®

d, = —a = .

o A AR TR

Again, by inspection and mathematical induction, -
wln
= (=1
(2n + 1)'
For this choice, & =1, we obtain

{wx)  {wx)* (wx)® B
3! 51 v T

yuk;=aﬁp—

(8.29)

(8.30).
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a (wx)®  (wx)® (owx)
='2{(“’x)_ TR TR +}

do .
= 2 sin wx. (8.31)

To summarize this approach, Eq. 8.23 may be written schematically as shown in
Fig. 8.1. From the uniqueness of power series (Section 5.7), the total coefficient
of each power of x must vanish—all by itself. The requirement that the first coef-
ficient (1) vanish leads to the indicial equation, Eq. 8.24. The second coefficient is
handled by setting a4, = 0. The vanishing of the coefficient of x* (and higher powers,
taken one at a time) leads to the recurrence relation Eq. 8.25.

l 1 i 1% ,
laok(k--ll]x"'z+ atk+ I)k]x""+ aylk + D%k + 1) {2 Haylk + 00+ 2 | L

- . =0
L =0 L -0 7 el o Haeo? b P
L L

fIG. 8.1

This series substitution, known as Frobenius® method, has given us two series
solutions of the linear oscillator equation. However, there are two points about such
series solutions that must be strongly emphasized:

1. The series solution should always be substituted back into the dlﬁ‘erennal
equation, to see if it works, as a precaution against algebraic and loglcal errors. -
Conversely, if it works, it is a solution. .

2. The acceptability of a series solution depends on its convergencc (1ncludmg
asymptotic convergence). It is quite possible for Frobenius’ method to give a series
solution which satisfies the original differential equation when substituted in but
which does not converge over the region of interest. Legendre’s differential equation

itlustrates this situation.

The alert reader will note that we obtained one solution of even symmetry,
y,(x) = y,(—x), and one of odd symmetry, ,(x) = —y,(—x). This is not just an
accident but a direct consequence of the form of the differential equation. Writing
a general differential equation as

Z(x) y(x) =0, (8.32)
in which #(x) is the differential operator, we see that for the linear oscillator
equation (Eg. 8.21) Z(x) is even, that is,

Lix) = L(—x). (8.33)
Often this is described as even parity.

Whenever the differential operator has a specific parity or symmetry, either even
or odd, we may interchange +x and —x, and Eq 8.32 becomes

+ #(x) y(—x) = (8.34)
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+ if #(x) is even, — if 2£(x) is odd. Clearly, if y(x) is a solution of the differential
equation, y{ — x) is.also a solution.Then any solution may be resolved into even and
odd parts, .
y(x) = 3y(x) + y(—x)3 + 3¥(x) — p(—x)), (8.35)

the first bracket on the right giving an even solution, the second an odd solution.

If we refer back to Section 8.3, we can see that Legendre, Chebyshev, Bessel,
simple harmonic oscillator, and Hermite equations (or differential operators) all
exhibit this even parity. Solutions of all of them may be presented as series of even
powers of x and separate series of odd powers of x. The Laguerre differential
operator has neither even nor odd symmetry ; hence its solutions cannot be expected
to exhibit even or odd parity.

Limitations of series approach—DBessel’s equation. This attack on the linear
uscillator equation was perhaps a bit too easy. By substituting the power series
(Eq. 8.22) into the differential equation (Eq."8.21) we obtained two independent
solutions with no trouble at all.

To get some idea of what can happen we try to solve Bessel’s equation,

X2y xy +(x2—nPy =0 : (8.36)
using ¥’ for dyjdx and y” for d*y/dx*. Again assuming a solution of the form
yixy= Y a¥**4,
izo

we differentiate and substitute into Eq. 8.36. The result is

Y aik + Dk + 4 — 14 4 3 ay(k + )+
i=0 i=o
. o w (8.37)
R + Zajxk+.l+2__ Zaznzxk.}l =0‘ .
A=0 A=0

By setting 1 =0, th§ coefficient ‘of x* the lowest power of x appearing on the
left-hand side, is '

aolk(k — 1)+ k—n*]=0, (8.38).
and again @, # 0 by definition. Equation 8.38 therefore yields the indicial equation

, : K —p? =0 (8.39)
with solutions &k = +n. :
It is of some interest to examine the coefficient of ¥**! also. Here we obtain

a,[(k+Dk+k+1—n*]=0
or .
ayk+ 1 —n)k+1+n)=0. (8.40)

For k — +n peither k + 1 — n ner k + [ + n vanishes and we must require a, = 0.
Proceeding to the coefficient of x**/ for k = n, we set 4 = jin the first, second, and
fourth terms of Eq. 8.37 and A = j — 2 in the third term. By requiring the resultant

1k = +4n= —} are exceptinns.
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coeficient of x**/ to vanish we obtain .
aftn+Nn+j-D+m+)-—n*l+a; ;=0
When j is replaced by j + 2, this can be rewritten
' 1
G TGt + D)
which is the desired recurrence relation. Repeated application of this recurrence
relation leads to

(8.41)

g —a | _ agh!
2T T2+ 2) T 2HMn+ DY
N 1 agn!
a, = —
N 242n + 4 S ITES Tk
I3 agn!
g = —

T e RN A L ITaE 3T A
and in general
agn!

Gp = (—l)pzﬁm. (8.42)
Inserting these coefficients in our assumed series solution, we have

ntx? nlx*

yx) = “°""[1 TG D P+ D) ] (8.43)
In sﬁmmation form
= nlx"*2i
yx) = “ojgo("‘ Y m
x\n+2i

- a5V sgla) 349

In Chapter 11 the final summation is identified as the Bessel function J (x). Notice
that this solution J,(x) has either even or odd symmetry’ as might be expected
from the form of Bessel’s equation.

When k == —» and # is not an integer, we may generate a second distinct series
to be labeled J_ (x). However, when —n is a negative integer, trouble develops.
The recurrence relation for the coefficients a, is still given by Eq. 8.41, but with 2n
replaced by —2n. Then, when j+ 2——2n or j=2(n— 1), the coefficient a;,,
blows up and we have no series solution. This catastrophe can be remedied in Eq.
8.44, as it is done in Chapter 11, with the result that

J_(x)=(=1)",(x), naninteger. _ (8'.45)

1 J.(x} is an even function if # is an even integer, an odd function if # is an odd integer. For
nonintegral # the x® has no such simple symmetry.
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The second solution simply reproduces the first. We have failed to construct a
second independent solution for ‘Bessel’s equation by this series technique when n
is an integer. _

By substituting in an infinite series, we have obtained two solutions for the linear

oscillator equation and one for Bessel's equation (two if n is not an integer). To the
questions ** Can we always do this? Will this method always work ?”, the answer
is no, we cannot always do this. This method of series solution will not always
work. ' . '
The success of the series substitution method depends on the roots of the indicial
equation and the degree of singularity of the coeflicients in the differential equation.
To understand better the effect of the equation coefficients on this naive series
substitution approach consider four simple equations

, 6
y ey =0, (8.46a)
” 6 :
-5 y =0, (8.46b)
., 1 , a.Z
L ‘a’ ’ .

" The reader may show easily that for Eq. 8.46a the indicial equation is

E—-—k—-6=0,

giving k = 3; —2. Since the equation is homogeneous in x (counting d?/dx* as x™2),
there is no recurrence relation; a; =0 for i > 0. However, we are feft with two
perfectly good solutions, x* and x 2. _ ‘
 Equation 8.46) differs from 8.46a by only one power of x, but this sends the
indicial equation to :
' —6(10 = 0,
with no solution at all, for we have agreed that a, # 0. Our series substitution
worked for Eq. 8.46a, which had only a regular singularity, but broke down at
Eq. 8.46b, which has an irregular singular point at the origin.

Continuing with Eq. 8.46¢c, we have added a term y’/x. The indicial equation is

' ' k* —a* =0, -

but again there is no recurrence relation. The solutions are y = x° x"° both

perfectly acceptable one term SETIES.

When we change the power of x in the coefficient of y* from —1 to —2, Eq.
8.46d, there is a drastic change in the solution. The indicial equation (with only the
' term contributing) becomes
- _ k=0.
There is a recurrence relation

A e (Vi)
it Y
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Unless the parameter a is selected to make the series terminate, we have

a; ij — 1
tim | 222 | = pi 9=
j=w | 4j i J+1
I jl V
= {iIm — = 00.
joeo J

Hence our series solution diverges for all x # 0. Again our method worked for
Eq. 8.46c with a regular singularity but failed when we had the irregular singu-
" larity of 8.46d.

Fuchs’s theorem. The answer to the basic question when the method of
series substitution can be expected to work is given by Fuchs’s theorem, which
asserts that we can always obtain at least one power series solution, provided we are
expanding about a point that is an ordinary point or at worst a regular singular
point. If we attempt an expansion about an irregular or essential singularity, our
method may fail as it did for Eqs. 8.46b and 8.464. Fortunately, the more important
equations of mathematical physics listed in Section 8.3 have no-irregular singulari-
ties in the finite plane. Further discussion of Fuchs’s theorem appears in Section
8.5.

From Table 8.3, Section 8.3, infinity is seen to be a singular point for all of the
equations considered. As a further iltustration of Fuchs’s theorem, Legendre’s
equation (with infinity as a regular singularity) has a convergent series solution in
negative powers of the argument (Section 12.10). In contrast, Bessel’s equation
w (with an irregular singularity at infinity) yields asymptotic series (Sections 5.11 and
: 11.6). While extremely useful, these asymptotic solutions are technically divergent.

ff\SOmmary. If we are expanding about an ordinary point or.at worst about a
regular singularity, the series substitution approach will yield at least one solution
{(Fuchs’s theorem), :

Whether we get one or two distinct solutions depends on the roots of the indicial -
equation.

1. If the two roots of the indicial equation are equal, we can obtain only one
solution by this series substitution methed.

2. If the two roots differ by a nonintegral number, two independent solutions
may be obtained.

3. If'the two roots differ by an integer, the larger of the two will yield a solution.
The smaller may or may not give a solution, depending on the behavior of the
coefficients. In the linear oscillator equation we obtain two solutions; for Bessel’s
equation, only one solution. ‘

e

EXERCISES

8.4.1 A series solution of Eq. 8.20 is attempted, expanding about the point x = x¢. If xo is an
ordinary point show that the indicial equation has roots & = 0,1.




